Diversified Temporal Subgraph Pattern Mining

Many graphs in real-world applications, such as telecommunications networks, social-interaction graphs and co-authorship graphs, contain temporal information. However, existing graph mining algorithms fail to exploit these temporal information and the resulting subgraph patterns do not contain any temporal attribute. In this paper, we study the problem of mining a set of diversified temporal subgraph patterns from a temporal graph, where each subgraph is associated with the time interval that the pattern spans. This problem motivates important applications such as finding social trends in social networks, or detecting temporal hotspots in telecommunications networks. We propose a divide-and-conquer algorithm along with effective pruning techniques, and our approach runs 2 to 3 orders of magnitude faster than a baseline algorithm and obtains high-quality temporal subgraph patterns in real temporal graphs.

[1]  Charalampos E. Tsourakakis,et al.  Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees , 2013, KDD.

[2]  Nicola Santoro,et al.  Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics , 2011, ArXiv.

[3]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Jia Wang,et al.  Truss Decomposition in Massive Networks , 2012, Proc. VLDB Endow..

[5]  Cecilia Mascolo,et al.  Temporal distance metrics for social network analysis , 2009, WOSN '09.

[6]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[7]  Nicola Santoro,et al.  Time-varying graphs and dynamic networks , 2010, Int. J. Parallel Emergent Distributed Syst..

[8]  Jon M. Kleinberg,et al.  The structure of information pathways in a social communication network , 2008, KDD.

[9]  Lijun Chang,et al.  Diversified top-k clique search , 2015, The VLDB Journal.

[10]  Christos D. Zaroliagis,et al.  Timetable Information: Models and Algorithms , 2004, ATMOS.

[11]  Vladimir Batagelj,et al.  An O(m) Algorithm for Cores Decomposition of Networks , 2003, ArXiv.

[12]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[13]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[14]  Guimei Liu,et al.  Effective Pruning Techniques for Mining Quasi-Cliques , 2008, ECML/PKDD.

[15]  Charu C. Aggarwal,et al.  A Survey of Algorithms for Dense Subgraph Discovery , 2010, Managing and Mining Graph Data.

[16]  Jian Pei,et al.  On mining cross-graph quasi-cliques , 2005, KDD '05.

[17]  Eric McDermid,et al.  Identifying groups of interest through temporal analysis and event response monitoring , 2013, 2013 IEEE International Conference on Intelligence and Security Informatics.

[18]  Yi Lu,et al.  Path Problems in Temporal Graphs , 2014, Proc. VLDB Endow..

[19]  Heng Tao Shen,et al.  Convoy Queries in Spatio-Temporal Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[20]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[21]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[22]  Cecilia Mascolo,et al.  Characterising temporal distance and reachability in mobile and online social networks , 2010, CCRV.

[23]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[24]  Joachim Gudmundsson,et al.  Computing longest duration flocks in trajectory data , 2006, GIS '06.

[25]  Mason A. Porter,et al.  Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks , 2014, Multiscale Model. Simul..

[26]  Samir Khuller,et al.  On Finding Dense Subgraphs , 2009, ICALP.

[27]  Yun Chi,et al.  Facetnet: a framework for analyzing communities and their evolutions in dynamic networks , 2008, WWW.

[28]  Vangelis Th. Paschos,et al.  Online maximum k-coverage∗ , 2010 .

[29]  Joachim Gudmundsson,et al.  Reporting flock patterns , 2006, Comput. Geom..

[30]  Maoguo Gong,et al.  Community Detection in Dynamic Social Networks Based on Multiobjective Immune Algorithm , 2012, Journal of Computer Science and Technology.

[31]  Coenraad Bron,et al.  Finding All Cliques of an Undirected Graph (Algorithm 457) , 1973, Commun. ACM.

[32]  Afonso Ferreira,et al.  Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks , 2003, Int. J. Found. Comput. Sci..

[33]  Panos M. Pardalos,et al.  Computational Challenges with Cliques, Quasi-cliques and Clique Partitions in Graphs , 2010, SEA.

[34]  Boleslaw K. Szymanski,et al.  LabelRankT: incremental community detection in dynamic networks via label propagation , 2013, DyNetMM '13.

[35]  Vassilis Kostakos Temporal Graphs , 2014, Encyclopedia of Social Network Analysis and Mining.