Development of a chemical probe against NUDT15

[1]  Kenneth A. Matreyek,et al.  Massively parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity , 2020, Proceedings of the National Academy of Sciences.

[2]  R. Heath,et al.  Mechanisms of NT5C2-Mediated Thiopurine Resistance in Acute Lymphoblastic Leukemia , 2019, Molecular Cancer Therapeutics.

[3]  E. Chua,et al.  Revisiting the Role of Thiopurines in Inflammatory Bowel Disease Through Pharmacogenomics and Use of Novel Methods for Therapeutic Drug Monitoring , 2018, Front. Pharmacol..

[4]  U. Hofmann,et al.  Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. , 2018, Blood.

[5]  J. Shay,et al.  Induced Telomere Damage to Treat Telomerase Expressing Therapy-Resistant Pediatric Brain Tumors , 2018, Molecular Cancer Therapeutics.

[6]  T. Helleday,et al.  Human NUDT22 Is a UDP-Glucose/Galactose Hydrolase Exhibiting a Unique Structural Fold. , 2018, Structure.

[7]  M. Beato,et al.  Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells , 2018, Nature Communications.

[8]  Damian J. Matuszewski,et al.  A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family , 2017, Nature Communications.

[9]  Jun J. Yang,et al.  Pharmacogenomics in acute lymphoblastic leukemia. , 2017, Best practice & research. Clinical haematology.

[10]  Krister Wennerberg,et al.  Corrigendum to “Searching for drug synergy in complex dose–response landscapes using an interaction potency model” [Comput. Struct. Biotechnol. J. 13 (2015) 504–513] , 2017, Computational and structural biotechnology journal.

[11]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[12]  N. G. Sheppard,et al.  NUDT15 Hydrolyzes 6-Thio-DeoxyGTP to Mediate the Anticancer Efficacy of 6-Thioguanine. , 2016, Cancer research.

[13]  T. Helleday,et al.  Pathways controlling dNTP pools to maintain genome stability. , 2016, DNA repair.

[14]  P. Nordlund,et al.  CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil , 2016, Nature Communications.

[15]  U. Hofmann,et al.  NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity , 2016, Nature Genetics.

[16]  K. Suphapeetiporn,et al.  NUDT15 c.415C>T increases risk of 6-mercaptopurine induced myelosuppression during maintenance therapy in children with acute lymphoblastic leukemia , 2016, Haematologica.

[17]  Motohiro Kato,et al.  Susceptibility to 6‐MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia , 2015, British journal of haematology.

[18]  T. Helleday,et al.  Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2 , 2015, Nature Communications.

[19]  Y. Kakuta,et al.  NUDT15 R139C causes thiopurine-induced early severe hair loss and leukopenia in Japanese patients with IBD , 2015, The Pharmacogenomics Journal.

[20]  M. Relling,et al.  Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  K. Schmiegelow,et al.  Mercaptopurine/Methotrexate Maintenance Therapy of Childhood Acute Lymphoblastic Leukemia: Clinical Facts and Fiction , 2014, Journal of pediatric hematology/oncology.

[22]  B. Vértessy,et al.  Preventive DNA repair by sanitizing the cellular (deoxy)nucleoside triphosphate pool , 2014, The FEBS journal.

[23]  Jianjun Liu,et al.  A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia , 2014, Nature Genetics.

[24]  P. Nordlund,et al.  The cellular thermal shift assay for evaluating drug target interactions in cells , 2014, Nature Protocols.

[25]  Richard Svensson,et al.  MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool , 2014, Nature.

[26]  P. Nordlund,et al.  Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay , 2013, Science.

[27]  M. Kiledjian,et al.  Multiple Nudix family proteins possess mRNA decapping activity. , 2013, RNA.

[28]  A. Ferrando,et al.  Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL , 2013, Nature Medicine.

[29]  Yinsheng Wang,et al.  Effects of 6-Thioguanine and S6-Methylthioguanine on Transcription in Vitro and in Human Cells* , 2012, The Journal of Biological Chemistry.

[30]  Y. Yamagata,et al.  Human MTH3 (NUDT18) Protein Hydrolyzes Oxidized Forms of Guanosine and Deoxyguanosine Diphosphates , 2012, The Journal of Biological Chemistry.

[31]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[32]  D. Shih,et al.  Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease. , 2011, World journal of gastroenterology.

[33]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[34]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[35]  H. Harashima,et al.  Suppression of mutagenesis by 8-hydroxy-2'-deoxyguanosine 5'-triphosphate (7,8-dihydro-8-oxo-2'-deoxyguanosine 5'-triphosphate) by human MTH1, MTH2, and NUDT5. , 2010, Free radical biology & medicine.

[36]  M. Sekiguchi,et al.  Proliferating Cell Nuclear Antigen Is Protected from Degradation by Forming a Complex with MutT Homolog2* , 2009, The Journal of Biological Chemistry.

[37]  Jay Painter,et al.  TLSMD web server for the generation of multi-group TLS models , 2006 .

[38]  M. Sekiguchi,et al.  Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides. , 2003, Biochemical and biophysical research communications.

[39]  T. Kinsella,et al.  DNA mismatch repair (MMR) mediates 6-thioguanine genotoxicity by introducing single-strand breaks to signal a G2-M arrest in MMR-proficient RKO cells. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[40]  W. Hiddemann,et al.  Acute myeloid leukaemia (AML): treatment of the older patient. , 2001, Best practice & research. Clinical haematology.

[41]  I. Wilson,et al.  Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. , 2000, European journal of biochemistry.

[42]  Robert A. Weinberg,et al.  Creation of human tumour cells with defined genetic elements , 1999, Nature.

[43]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[44]  D. Frick,et al.  The MutT Proteins or “Nudix” Hydrolases, a Family of Versatile, Widely Distributed, “Housecleaning” Enzymes* , 1996, The Journal of Biological Chemistry.

[45]  Qinguo Zheng,et al.  Role of Postreplicative DNA Mismatch Repair in the Cytotoxic Action of Thioguanine , 1996, Science.

[46]  J. Buckley,et al.  Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children's Cancer Group. , 1996, Blood.

[47]  R. Gray,et al.  Thioguanine used in maintenance therapy of chronic myeloid leukaemia causes non‐cirrhotic portal hypertension. RESULTS FROM MRC CML II TRIAL COMPARING BUSULPHAN WITH BUSULPHAN AND THIOGUANINE , 1991, British journal of haematology.

[48]  Y. Cheng,et al.  2'-Deoxy-6-thioguanosine 5'-triphosphate as a substrate for purified human DNA polymerases and calf thymus terminal deoxynucleotidyltransferase in vitro. , 1991, Molecular pharmacology.

[49]  J. Shay,et al.  Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2'-deoxyguanosine. , 2015, Cancer discovery.

[50]  H. Hwang,et al.  Drug affinity responsive target stability (DARTS) for small-molecule target identification. , 2015, Methods in molecular biology.

[51]  Stefan Knapp,et al.  Kinase inhibitor selectivity profiling using differential scanning fluorimetry. , 2012, Methods in molecular biology.

[52]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[53]  P. Karran,et al.  Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer , 2008, Nature Reviews Cancer.

[54]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .