Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres

[1]  G. Finocchiaro,et al.  Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres , 2013, Molecular Cancer.

[2]  G. Reifenberger,et al.  EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. , 2013, Cancer cell.

[3]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[4]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[5]  Raul Rabadan,et al.  The integrated landscape of driver genomic alterations in glioblastoma , 2013, Nature Genetics.

[6]  S. Niclou,et al.  EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis , 2013, Acta Neuropathologica.

[7]  K. Aldape,et al.  EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. , 2012, Molecular cell.

[8]  K. Aldape,et al.  Erratum: EGFR-Induced and PKCε Monoubiquitylation-Dependent NF-κB Activation Upregulates PKM2 Expression and Promotes Tumorigenesis (Molecular Cell (2012) 48(5) (771–784)(S1097276512008283)(10.1016/j.molcel.2012.09.028)) , 2012 .

[9]  M. Weller,et al.  Epidermal growth factor receptor: a re-emerging target in glioblastoma. , 2012, Current opinion in neurology.

[10]  S. Vandenberg,et al.  EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway , 2012, Oncogene.

[11]  G. Finocchiaro,et al.  The MET oncogene is a functional marker of a glioblastoma stem cell subtype. , 2012, Cancer research.

[12]  M. Nikiforova,et al.  Paradoxical Relationship Between the Degree of EGFR Amplification and Outcome in Glioblastomas , 2012, The American journal of surgical pathology.

[13]  Svetlana Kotliarova,et al.  SnapShot: glioblastoma multiforme. , 2012, Cancer cell.

[14]  Lynda Chin,et al.  Emerging insights into the molecular and cellular basis of glioblastoma. , 2012, Genes & development.

[15]  M. Westphal,et al.  Glioblastoma Stem–like Cell Lines with Either Maintenance or Loss of High-Level EGFR Amplification, Generated via Modulation of Ligand Concentration , 2012, Clinical Cancer Research.

[16]  T. Cloughesy,et al.  Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. , 2011, Cancer discovery.

[17]  J. Martinez-Climent,et al.  Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo , 2011, Oncogene.

[18]  J. Fernández-Luna,et al.  The NFκB pathway: a therapeutic target in glioblastoma , 2011, Oncotarget.

[19]  M. Hung,et al.  CARMA3 is crucial for EGFR-Induced activation of NF-κB and tumor progression. , 2011, Cancer research.

[20]  K. Aldape,et al.  NFKBIA deletion in glioblastomas. , 2011, The New England journal of medicine.

[21]  R. Galli,et al.  Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. , 2010, Cancer research.

[22]  Yoshitaka Narita,et al.  Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. , 2010, Genes & development.

[23]  A. Ruiz i Altaba,et al.  NANOG regulates glioma stem cells and is essential in vivo acting in a cross‐functional network with GLI1 and p53 , 2010, The EMBO journal.

[24]  Bernardo Celda,et al.  New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile , 2010, Modern Pathology.

[25]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[26]  Martin Dugas,et al.  High-Resolution Genomic Copy Number Profiling of Glioblastoma Multiforme by Single Nucleotide Polymorphism DNA Microarray , 2009, Molecular Cancer Research.

[27]  D. Rowitch,et al.  Glioma Stem Cells: A Midterm Exam , 2008, Neuron.

[28]  Fiona M. Watt,et al.  Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3 , 2008, Nature Cell Biology.

[29]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[30]  M. Elvers,et al.  Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling , 2006, BMC Neuroscience.

[31]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[32]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[33]  K. Young,et al.  Neural progenitor number is regulated by nuclear factor‐κB p65 and p50 subunit‐dependent proliferation rather than cell survival , 2006, Journal of neuroscience research.

[34]  P. Kleihues,et al.  Epidemiology and etiology of gliomas , 2005, Acta Neuropathologica.

[35]  G. Broggi,et al.  Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma , 2004, Molecular Cancer.

[36]  G. Kapoor,et al.  Distinct Domains in the SHP-2 Phosphatase Differentially Regulate Epidermal Growth Factor Receptor/NF-κB Activation through Gab1 in Glioblastoma Cells , 2004, Molecular and Cellular Biology.

[37]  H. Ng,et al.  High-resolution genome-wide allelotype analysis identifies loss of chromosome 14q as a recurrent genetic alteration in astrocytic tumours , 2002, British Journal of Cancer.

[38]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[39]  Debajit K. Biswas,et al.  Epidermal growth factor-induced nuclear factor κB activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells , 2000 .

[40]  P. O’Connell,et al.  A study of loss of heterozygosity at 70 loci in anaplastic astrocytoma and glioblastoma multiforme with implications for tumor evolution. , 1999, Neuro-oncology.

[41]  H. Wiley,et al.  The Enhanced Tumorigenic Activity of a Mutant Epidermal Growth Factor Receptor Common in Human Cancers Is Mediated by Threshold Levels of Constitutive Tyrosine Phosphorylation and Unattenuated Signaling* , 1997, The Journal of Biological Chemistry.

[42]  M. Herridge NFKBIA Deletion in Glioblastomas , 2011 .

[43]  A. Baldwin,et al.  Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. , 2006, Oncogene.

[44]  M. Merville,et al.  Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. , 2005, Trends in biochemical sciences.

[45]  M. Merville,et al.  Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation , 2005 .

[46]  A. Pardee,et al.  Epidermal growth factor-induced nuclear factor kappa B activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.