The likelihood ratio test for general mixture models with or without structural parameter

This paper deals with the likelihood ratio test (LRT) for testing hypotheses on the mixing measure in mixture models with or without structural parameter. The main result gives the asymptotic distribution of the LRT statistics under some conditions that are proved to be almost necessary. A detailed solution is given for two testing problems: the test of a single distribution against any mixture, with application to Gaussian, Poisson and binomial distributions; the test of the number of populations in a finite mixture with or without structural parameter.

[1]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[2]  P. Sen,et al.  On the asymptotic performance of the log likelihood ratio statistic for the mixture model and related results , 1984 .

[3]  F. Lord Estimating true-score distributions in psychological testing (an empirical bayes estimation problem) , 1969 .

[4]  J. Henna Estimation of the number of components of finite mixtures of multivariate distributions , 2005 .

[5]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[6]  Yongsong Qin,et al.  The likelihood ratio test for homogeneity in bivariate normal mixtures , 2006 .

[7]  Cristian Pasarica,et al.  Testing Homogeneity in Gamma Mixture Models , 2003 .

[8]  Lancelot F. James,et al.  Consistent estimation of mixture complexity , 2001 .

[9]  Yongsong Qin,et al.  Likelihood ratio test for homogeneity in normal mixtures in the presence of a structural parameter , 2004 .

[10]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[11]  Eric S. Lander,et al.  Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial , 1995 .

[12]  E. Gassiat,et al.  The likelihood ratio test for the number of components in a mixture with Markov regime , 2000 .

[13]  Susan A. Murphy,et al.  Semiparametric likelihood ratio inference , 1997 .

[14]  Xin Liu,et al.  Asymptotics for the likelihood ratio test in a two-component normal mixture model , 2004 .

[15]  E. Gassiat,et al.  Testing in locally conic models, and application to mixture models , 1997 .

[16]  Aurélien Garivier,et al.  A mdl approach to hmm with Poisson and Gaussian emissions. Application to order identification , 2005 .

[17]  Bernard Garel,et al.  Likelihood ratio test for univariate Gaussian mixture , 2001 .

[18]  Antoine Chambaz,et al.  Testing the order of a model , 2006 .

[19]  Jiahua Chen,et al.  Large sample distribution of the likelihood ratio test for normal mixtures , 2001 .

[20]  Peter Hall,et al.  Theoretical analysis of power in a two-component normal mixture model , 2005 .

[21]  John D. Kalbfleisch,et al.  Modified likelihood ratio test in finite mixture models with a structural parameter , 2005 .

[22]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[23]  G. Wood Binomial mixtures: geometric estimation of the mixing distribution , 1999 .

[24]  Bernard Garel,et al.  Asymptotic theory of the likelihood ratio test for the identification of a mixture , 2005 .

[25]  E. Gassiat Likelihood ratio inequalities with applications to various mixtures , 2002 .

[26]  E. Gassiat,et al.  Asymptotic distribution and local power of the log-likelihood ratio test for mixtures: bounded and unbounded cases , 2006 .

[27]  Gabriela Ciuperca Likelihood Ratio Statistic for Exponential Mixtures , 2002 .

[28]  Mohamed Lemdani,et al.  Likelihood ratio tests in contamination models , 1999 .

[29]  J. Kalbfleisch,et al.  A modified likelihood ratio test for homogeneity in finite mixture models , 2001 .

[30]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[31]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[32]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[33]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[34]  Harshinder Singh,et al.  Stochastic comparisons of Poisson and binomial random variables with their mixtures , 2003 .

[35]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[36]  J. Hartigan A failure of likelihood asymptotics for normal mixtures , 1985 .

[37]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[38]  A. V. D. Vaart,et al.  Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .

[39]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[40]  John D. Kalbfleisch,et al.  Testing for a finite mixture model with two components , 2004 .

[41]  Céline Delmas,et al.  On likelihood ratio tests in Gaussian mixture models , 2003 .

[42]  Yungtai Lo,et al.  Likelihood ratio tests of the number of components in a normal mixture with unequal variances , 2005 .

[43]  O. Pons,et al.  Likelihood ratio tests for genetic linkage , 1997 .

[44]  E. Gassiat,et al.  Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes , 1999 .