Chinese Remaindering for Algebraic Numbers in a Hidden Field
暂无分享,去创建一个
[1] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers , 1990 .
[2] Erich Kaltofen,et al. Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..
[3] C. P. Schnorr,et al. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..
[4] R. Kannan. ALGORITHMIC GEOMETRY OF NUMBERS , 1987 .
[5] Jacques Stern,et al. Lattice Reduction in Cryptology: An Update , 2000, ANTS.
[6] C. Ding. Chinese remainder theorem , 1996 .
[7] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[8] Antoine Joux,et al. Lattice Reduction: A Toolbox for the Cryptanalyst , 1998, Journal of Cryptology.
[9] A. Salomaa,et al. Chinese remainder theorem: applications in computing, coding, cryptography , 1996 .
[10] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[11] Ravi Kumar,et al. A sieve algorithm for the shortest lattice vector problem , 2001, STOC '01.
[12] E. V. Krishnamurthy,et al. Methods and Applications of Error-Free Computation , 1984, Texts and Monographs in Computer Science.
[13] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[14] Jacques Stern,et al. The Two Faces of Lattices in Cryptology , 2001, CaLC.
[15] Joachim von zur Gathen,et al. Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..