Charge-Resistance Approach to Benchmarking Performance of Beyond-CMOS Information Processing Devices

Multiple beyond-CMOS information processing devices are presently under active research and require methods of benchmarking them. A new approach for calculating the performance metric, energy-delay product, of such devices is proposed. The approach involves estimating the device properties of resistance and switching charge, rather than dynamic evolution characteristics, such as switching energy and time. The application of this approach to a wide class of charge-based and noncharge-based devices is discussed. The approach suggests pathways for improving the performance of `beyond-CMOS' devices and a new realistic limit for energy-delay product in terms of the Planck's constant.

[1]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[2]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[3]  Angik Sarkar,et al.  Information processing with spin-coupled multi-magnet networks , 2012 .

[4]  L. J. Sham,et al.  Spin-based logic in semiconductors for reconfigurable large-scale circuits , 2007, Nature.

[5]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[6]  K. Boucart,et al.  Double-Gate Tunnel FET With High-κ Gate Dielectric , 2008 .

[7]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[8]  Yuyuan Tian,et al.  Dielectric screening enhanced performance in graphene FET. , 2009, Nano letters.

[9]  K. H. Ploog,et al.  Programmable computing with a single magnetoresistive element , 2003, Nature.

[10]  K. Boucart,et al.  Double-Gate Tunnel FET With High-$\kappa$ Gate Dielectric , 2007, IEEE Transactions on Electron Devices.

[11]  Takashi Kimura,et al.  Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching , 2008 .

[12]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[13]  Dejan Markovic,et al.  True Energy-Performance Analysis of the MTJ-Based Logic-in-Memory Architecture (1-Bit Full Adder) , 2010, IEEE Transactions on Electron Devices.

[14]  S. Sugahara,et al.  A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain , 2004 .

[15]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[16]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[17]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[18]  Jan Hilgevoord,et al.  The uncertainty principle for energy and time. II , 1996 .

[19]  G. Fiori,et al.  Ultralow-Voltage Bilayer Graphene Tunnel FET , 2009, IEEE Electron Device Letters.

[20]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[21]  Csaba Andras Moritz,et al.  Spin wave functions nanofabric update , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[22]  K.L. Wang,et al.  Spin Wave Magnetic NanoFabric: A New Approach to Spin-Based Logic Circuitry , 2008, IEEE Transactions on Magnetics.

[23]  Gang Xiong,et al.  Submicrometer Ferromagnetic NOT Gate and Shift Register , 2002, Science.

[24]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[25]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[26]  K. Xia,et al.  An all-metallic logic gate based on current-driven domain wall motion. , 2008, Nature nanotechnology.

[27]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[28]  Seung-Yun Lee,et al.  Phase-Change-Driven Programmable Switch for Nonvolatile Logic Applications , 2009, IEEE Electron Device Letters.

[29]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[30]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[31]  Hyungsoon Shin,et al.  Magneto-Logic Device Based on a Single-Layer Magnetic Tunnel Junction , 2007, IEEE Transactions on Electron Devices.

[32]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[33]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[34]  Jian-Ping Wang,et al.  Programmable spintronics logic device based on a magnetic tunnel junction element , 2005 .

[35]  G. Iannaccone,et al.  On the Possibility of Tunable-Gap Bilayer Graphene FET , 2008, IEEE Electron Device Letters.

[36]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[37]  Inc.,et al.  Transit-time spin field-effect transistor , 2007 .

[38]  J. Bokor,et al.  Simulation studies of nanomagnet-based logic architecture. , 2008, Nano letters (Print).

[39]  S. Datta,et al.  Switching energy-delay of all spin logic devices , 2010, 1012.0861.

[40]  K. Saraswat,et al.  Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope , 2008, 2008 IEEE International Electron Devices Meeting.

[41]  Dmitri E. Nikonov,et al.  Magnetoelectric spin wave amplifier for spin wave logic circuits , 2009 .