High-resolution vacuum ultraviolet spectroscopy of 5d-4f transitions in Gd and Lu fluorides

Observation, investigation, and characterization of vacuum ultraviolet (VUV) $(\ensuremath{\sim}10\phantom{\rule{0.3em}{0ex}}\mathrm{eV})$ luminescence due to interconfigurational $4{f}^{n\ensuremath{-}1}5d\text{\ensuremath{-}}4{f}^{n}$ transitions in ${\mathrm{Gd}}^{3+}$ and ${\mathrm{Lu}}^{3+}$ are reported. High-resolution $(\ensuremath{\sim}0.5\phantom{\rule{0.3em}{0ex}}\mathrm{\AA{}})$ VUV emission and excitation spectra as well as decay kinetics of VUV luminescence have been measured for $\mathrm{Li}\mathrm{Gd}{\mathrm{F}}_{4}$, $\mathrm{Gd}{\mathrm{F}}_{3}$, $\mathrm{Li}\mathrm{Lu}{\mathrm{F}}_{4}$, and $\mathrm{Lu}{\mathrm{F}}_{3}$ crystals using synchrotron radiation. The obtained results are the direct proof that the VUV luminescence observed from $\mathrm{Li}\mathrm{Gd}{\mathrm{F}}_{4}$ or $\mathrm{Gd}{\mathrm{F}}_{3}$ crystals and $\mathrm{Li}\mathrm{Lu}{\mathrm{F}}_{4}$ or $\mathrm{Lu}{\mathrm{F}}_{3}$ originates from $4{f}^{6}5d\text{\ensuremath{-}}4{f}^{7}$ transitions in ${\mathrm{Gd}}^{3+}$ and $4{f}^{13}5d\text{\ensuremath{-}}4{f}^{14}$ transitions in ${\mathrm{Lu}}^{3+}$, respectively. The fine structure due to zero-phonon and vibronic lines was well resolved in VUV emission and excitation spectra of $\mathrm{Li}\mathrm{Gd}{\mathrm{F}}_{4}$, whereas the spectra of $\mathrm{Gd}{\mathrm{F}}_{3}$ and $\mathrm{Lu}{\mathrm{F}}_{3}$ have a smooth shape because of stronger electron-lattice coupling between the $4{f}^{n\ensuremath{-}1}5d$ electronic configuration of the ${\mathrm{Gd}}^{3+}$ and ${\mathrm{Lu}}^{3+}$ ions and the lattice vibrations.

[1]  D. Huber,et al.  Utilization of Near- and Vacuum-Ultraviolet Synchrotron Radiation for the Excitation of Visible Fluorescences in Ruby and MgO:Cr3+ , 1970 .

[2]  A. Meijerink,et al.  6I emission and vibronic transitions of Eu2+ in KMgF3 , 1994 .

[3]  E. Loh Lowest 4 f → 5 d Transition of Trivalent Rare-Earth Ions in Ca F 2 Crystals , 1966 .

[4]  J. Gesland,et al.  Reduction by γ-irradiation of tetravalent uranium in LiYF4: U crystals for laser application , 1995 .

[5]  R. L. Moreira,et al.  Raman-spectroscopic study of lanthanide trifluorides with the β-YF3 structure , 2004 .

[6]  A. Kityk,et al.  Infinite Lifshitz point in incommensurate type-I dielectrics , 1999 .

[7]  Kei-Hsiung Yang,et al.  VUV fluorescence of Nd3+‐, Er3+, and Tm3+‐doped trifluorides and tunable coherent sources from 1650 to 2600 Å , 1976 .

[8]  W. Carnall,et al.  Optical Absorption Spectra of Er3+:LaF3 and ErCl3 · 6H2O , 1972 .

[9]  W. Yen,et al.  Excitation of uv Fluorescence in LaF 3 Doped with Trivalent Cerium and Praseodymium , 1973 .

[10]  G. Dieke,et al.  The Spectra of the Doubly and Triply Ionized Rare Earths , 1963 .

[11]  J. Gesland,et al.  Low-temperature high-resolution VUV spectroscopy of Ce3+ doped LiYF4, LiLuF4 and LuF3 crystals , 2004 .

[12]  N. Bloembergen,et al.  Two-Photon Absorption as a New Test of the Judd-Ofelt Theory , 1981 .

[13]  M. Schlesinger,et al.  The lowest energy 4ƒ-5d transition of the triply ionized gadolinium in CaF2 , 1978 .

[14]  W. Yen,et al.  Vacuum-ultraviolet absorption bands of trivalent lanthanides in LaF3 , 1976 .

[15]  J. Gesland,et al.  VUV emission of Er3+ and Tm3+ in fluoride crystals , 1998 .

[16]  A. Meijerink,et al.  Spin-allowed and spin-forbidden fd emission from Er 3 + and LiYF 4 , 1998 .

[17]  G. Zimmerer Status report on luminescence investigations with synchrotron radiation at HASYLAB , 1991 .

[18]  A. Bulou,et al.  Lattice dynamics of fluoride scheelites: I. Raman and infrared study of and ( and Yb) , 1997 .