Interior Distance Using Barycentric Coordinates
暂无分享,去创建一个
[1] Karthik Ramani,et al. IDSS: deformation invariant signatures for molecular shape comparison , 2009, BMC Bioinformatics.
[2] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[3] Kai Hormann,et al. Mean value coordinates for arbitrary planar polygons , 2006, TOGS.
[4] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[5] François Fouss,et al. Graph Nodes Clustering Based on the Commute-Time Kernel , 2007, PAKDD.
[6] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[7] Haibin Ling,et al. Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] Guoliang Xu. Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..
[9] Christos H. Papadimitriou,et al. An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..
[10] John F. Canny,et al. New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[11] Luiz Velho,et al. A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.
[12] Jirí Kosinka,et al. On the injectivity of Wachspress and mean value mappings between convex polygons , 2010, Adv. Comput. Math..
[13] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[14] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[15] Chee-Keng Yap,et al. Approximate Euclidean shortest path in 3-space , 1994, SCG '94.
[16] Steven J. Gortler,et al. Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..
[17] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[18] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[19] Tao Ju,et al. Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..
[20] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[21] Kai Hormann,et al. Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.
[22] Raif M. Rustamov,et al. Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .