The Entropy of Lukasiewicz-Languages

The paper presents an elementary approach for the calculation of the entropy of a class of context-free languages. This approach is based on the consideration of roots of a real polynomial and is also suitable for calculating the Bernoulli measure.

[1]  F. P. Kaminger The Noncomputability of the Channel Capacity of Context-Senstitive Languages , 1970, Inf. Control..

[2]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[3]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[4]  Jørn Justesen,et al.  On Probabilistic Context-Free Grammars that Achieve Capacity , 1975, Inf. Control..

[5]  Ludwig Staiger Ein Satz über die Entropie von Untermonoiden (A Theorem on the Entropy of Submonoids) , 1988, Theor. Comput. Sci..

[6]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[7]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[8]  Ludwig Staiger,et al.  On Infinitary Finite Length Codes , 1986, RAIRO Theor. Informatics Appl..

[9]  Michel Latteux,et al.  Codes and Infinite Words , 1994, Acta Cybern..

[10]  Berndt Farwer,et al.  ω-automata , 2002 .

[11]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[12]  J. Berstel,et al.  Theory of codes , 1985 .

[13]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[14]  Ludwig Staiger,et al.  Kolmogorov Complexity and Hausdorff Dimension , 1989, FCT.

[15]  Henning Fernau,et al.  Valuations of Languages, with Applications to Fractal Geometry , 1995, Theor. Comput. Sci..