An enhanced role and expanded developmental origins for gamma‐aminobutyric acidergic interneurons in the human cerebral cortex

Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.

[1]  N. Zečević,et al.  Contributions of cortical subventricular zone to the development of the human cerebral cortex , 2005, The Journal of comparative neurology.

[2]  David J. Anderson,et al.  Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. , 2002, Genes & development.

[3]  Roger D. Traub,et al.  Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks , 2012, Neuron.

[4]  N. Zečević,et al.  Dorsal Radial Glial Cells Have the Potential to Generate Cortical Interneurons in Human But Not in Mouse Brain , 2011, The Journal of Neuroscience.

[5]  A. Zaitsev Classification and function of GABAergic interneurons of the mammalian cerebral cortex , 2013, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[6]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[7]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[8]  S. Anderson,et al.  A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. , 2008, Developmental biology.

[9]  M. Götz,et al.  Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6 , 2004, Molecular and Cellular Neuroscience.

[10]  N. Zečević,et al.  Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. , 2011, Cerebral cortex.

[11]  Y. Yanagawa,et al.  Lhx6 Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes , 2007, The Journal of Neuroscience.

[12]  J. Fish,et al.  OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling , 2010, Nature Neuroscience.

[13]  E. G. Jones,et al.  Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[15]  D. Geschwind,et al.  Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits , 2011, Cell.

[16]  S. Antic,et al.  Neurogenic potential of hESC-derived human radial glia is amplified by human fetal cells. , 2013, Stem cell research.

[17]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[18]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[19]  Z. Molnár,et al.  Best-laid schemes for interneuron origin of mice and men , 2013, Nature Neuroscience.

[20]  J. Rossier,et al.  Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations , 2010, Cerebral cortex.

[21]  J. DeFelipe,et al.  The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex. , 2007, Cerebral cortex.

[22]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[23]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[24]  O. Marín,et al.  Cell migration in the forebrain. , 2003, Annual review of neuroscience.

[25]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[26]  C. Schuurmans,et al.  A role for proneural genes in the maturation of cortical progenitor cells. , 2006, Cerebral cortex.

[27]  KouichiC . Nakamura,et al.  Tangential migration and proliferation of intermediate progenitors of GABAergic neurons in the mouse telencephalon , 2011, Development.

[28]  Jan H Lui,et al.  Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences , 2013, Nature Neuroscience.

[29]  Paul Leonard Gabbott,et al.  Local‐circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: Morphology and quantitative distribution , 1997, The Journal of comparative neurology.

[30]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[31]  R. Dixit,et al.  Ascl1 participates in Cajal-Retzius cell development in the neocortex. , 2011, Cerebral cortex.

[32]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[33]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[34]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[35]  D. O'Leary,et al.  Genetic regulation of arealization of the neocortex , 2008, Current Opinion in Neurobiology.

[36]  Pasko Rakic,et al.  Renewed focus on the developing human neocortex , 2010, Journal of anatomy.

[37]  A. Zaitsev,et al.  Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells , 2013, PloS one.

[38]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[39]  O. Marín,et al.  Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. , 1999, Development.

[40]  D. Lewis,et al.  Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. , 2008, Journal of neurophysiology.

[41]  F. Guillemot,et al.  Mash1 regulates neurogenesis in the ventral telencephalon. , 1999, Development.

[42]  Javier DeFelipe,et al.  Double bouquet cell in the human cerebral cortex and a comparison with other mammals , 2005, The Journal of comparative neurology.

[43]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[44]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[45]  N. Zečević,et al.  Emerging complexity of layer I in human cerebral cortex. , 2003, Cerebral cortex.

[46]  J. DeFelipe,et al.  Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex. , 2009, Cerebral cortex.

[47]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[48]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[49]  M. Bartos,et al.  Interneurons Provide Circuit-Specific Depolarization and Hyperpolarization , 2012, The Journal of Neuroscience.

[50]  L. Goff,et al.  Functional differentiation of a clone resembling embryonic cortical interneuron progenitors , 2008, Developmental neurobiology.

[51]  N. Dehorter,et al.  Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes , 2013, Neuron.

[52]  J. Rubenstein,et al.  Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. , 2002, Development.

[53]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[54]  J. Britto,et al.  Neurons on the Move: Migration and Lamination of Cortical Interneurons , 2012, Neurosignals.

[55]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[56]  G. Nikkhah,et al.  Organization of the human fetal subpallium , 2014, Front. Neuroanat..

[57]  S. Anderson,et al.  Cortical Interneurons and Their Origins , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[58]  N. Zečević,et al.  COUP-TFII expressing interneurons in human fetal forebrain. , 2012, Cerebral cortex.

[59]  Y. Kawasawa,et al.  Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. , 2009, Cerebral cortex.

[60]  M. Whittington,et al.  Gamma frequency oscillations gate temporally coded afferent inputs in the rat hippocampal slice , 1998, Neuroscience Letters.

[61]  M. Ekker,et al.  Distinct cis-Regulatory Elements from the Dlx1/Dlx2 Locus Mark Different Progenitor Cell Populations in the Ganglionic Eminences and Different Subtypes of Adult Cortical Interneurons , 2007, The Journal of Neuroscience.

[62]  B. Berger,et al.  Origins of Cortical GABAergic Neurons in the Cynomolgus Monkey , 2008, Cerebral cortex.

[63]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[64]  A. Zaitsev,et al.  Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. , 2007, Journal of neurophysiology.

[65]  S. Krauss,et al.  Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. , 2005, Developmental biology.

[66]  F. Valverde,et al.  Dynamics of Cell Migration from the Lateral Ganglionic Eminence in the Rat , 1996, The Journal of Neuroscience.

[67]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[68]  G. Clowry,et al.  A Molecular Neuroanatomical Study of the Developing Human Neocortex from 8 to 17 Postconceptional Weeks Revealing the Early Differentiation of the Subplate and Subventricular Zone , 2007, Cerebral cortex.

[69]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[70]  E. Monuki The Morphogen Signaling Network in Forebrain Development and Holoprosencephaly , 2007, Journal of neuropathology and experimental neurology.

[71]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[72]  P. Rakic Evolution of the neocortex: Perspective from developmental biology , 2010 .

[73]  John G. Parnavelas,et al.  The origin and migration of cortical neurones: new vistas , 2000, Trends in Neurosciences.

[74]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[75]  A. Kriegstein,et al.  Neurogenic radial glia in the outer subventricular zone of human neocortex , 2010, Nature.

[76]  A. Sadikot,et al.  Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype , 2007, The Journal of comparative neurology.

[77]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[78]  W. Fu,et al.  The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. , 2004, Developmental biology.

[79]  François Guillemot,et al.  Mash1 specifies neurons and oligodendrocytes in the postnatal brain , 2004, The EMBO journal.

[80]  Edward G Jones,et al.  The origins of cortical interneurons: mouse versus monkey and human. , 2009, Cerebral cortex.

[81]  K. Campbell,et al.  Distinct Temporal Requirements for the Homeobox Gene Gsx2 in Specifying Striatal and Olfactory Bulb Neuronal Fates , 2009, Neuron.

[82]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[83]  N. Zečević,et al.  Interneurons in the developing human neocortex , 2011, Developmental neurobiology.

[84]  J. DeFelipe,et al.  Colocalization of calbindin D‐28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex , 1996, The Journal of comparative neurology.

[85]  C. Schuurmans,et al.  Proneural genes in neocortical development , 2013, Neuroscience.

[86]  J. DeFelipe Chandelier cells and epilepsy. , 1999, Brain : a journal of neurology.

[87]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[88]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[89]  T. Jessell,et al.  Specification of dorsal telencephalic character by sequential Wnt and FGF signaling , 2003, Nature Neuroscience.

[90]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[91]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[92]  S. Goderie,et al.  Multipotent Stem Cells from the Mouse Basal Forebrain Contribute GABAergic Neurons and Oligodendrocytes to the Cerebral Cortex during Embryogenesis , 2001, The Journal of Neuroscience.

[93]  Susan Lindsay,et al.  Investigating gradients of gene expression involved in early human cortical development , 2010, Journal of anatomy.

[94]  J. Rubenstein,et al.  Subcortical origins of human and monkey neocortical interneurons , 2013, Nature Neuroscience.

[95]  J. Rubenstein,et al.  Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain , 2007, Neuron.

[96]  Gavin J. Clowry,et al.  The Early Fetal Development of Human Neocortical GABAergic Interneurons , 2013, Cerebral cortex.

[97]  H. Takebayashi,et al.  Basic fibroblast growth factor endows dorsal telencephalic neural progenitors with the ability to differentiate into oligodendrocytes but not γ‐aminobutyric acidergic neurons , 2006, Journal of neuroscience research.

[98]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[99]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[100]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[101]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[102]  J. Hébert,et al.  The ups and downs of holoprosencephaly: dorsal versus ventral patterning forces , 2008, Clinical genetics.

[103]  S. Anderson,et al.  Origins of neocortical interneurons in mice , 2011, Developmental neurobiology.