Nonlinear control of induction motors: the observed field oriented control scheme

In this paper, we modify the standard field-oriented control (FOG) transformations to facilitate the design of an adaptive observed field-oriented control (OFOC) scheme which is free of singularities, does not require rotor flux measurements, and provides for simultaneous rotor flux tracking/rotor position tracking. Specifically, given measurements of rotor position, rotor velocity, and stator current, the controller ensures global asymptotic rotor position/rotor flux tracking despite the uncertainty associated with the mechanical subsystem parameters and the stator circuit electrical parameters.

[1]  Romeo Ortega,et al.  State observers are unnecessary for induction motor control , 1994 .

[2]  Darren M. Dawson,et al.  An adaptive controller for a class of induction motor systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[3]  Philip T. Krein,et al.  New controller-observer design for induction motor control , 1992 .

[4]  John N. Chiasson,et al.  A systematic approach to selecting flux references for torque maximization in induction motors , 1995, IEEE Trans. Control. Syst. Technol..

[5]  Jean-Michel Dion,et al.  Applied nonlinear control of an induction motor using digital signal processing , 1994, IEEE Trans. Control. Syst. Technol..

[6]  In-Joong Ha,et al.  Control of induction motors via feedback linearization with input-output decoupling , 1990 .

[7]  Darren M. Dawson,et al.  Adaptive control of induction motor systems despite rotor resistance uncertainty , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[8]  Li-Chen Fu,et al.  Nonlinear observer-based adaptive tracking control for induction motors with unknown load , 1995, IEEE Trans. Ind. Electron..

[9]  Darren M. Dawson,et al.  Adaptive control for a class of induction motors via an on-line flux calculation method , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[10]  Frank L. Lewis,et al.  Robust adaptive control of induction motors without flux measurements , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[11]  Darren M. Dawson,et al.  A global adaptive link position tracking controller for robot manipulators driven by induction motors , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[12]  D.G. Taylor,et al.  Nonlinear control of electric machines: an overview , 1994, IEEE Control Systems.

[13]  Rogelio Lozano,et al.  Adaptive control of robot manipulators with flexible joints , 1992 .

[14]  Carlos Canudas de Wit,et al.  Robot motion control using induction motor drives , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  Darren M. Dawson,et al.  Contril of rigid-link, flexible-joint robots: a survey of backstepping approaches , 1995, J. Field Robotics.

[16]  K.S. Yeung,et al.  Sliding-mode control of an induction motor without flux measurement , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[17]  R. Ortega,et al.  On speed control of induction motors , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[18]  R. Marino,et al.  Adaptive input-output linearizing control of induction motors , 1993, IEEE Trans. Autom. Control..

[19]  R. Rabinovici,et al.  On Field Oriented and Passivity-based Control of Induction Motors: Downward Compatibility , 1995 .

[20]  Riccardo Marino,et al.  Adaptive observer‐based control of induction motors with unknown rotor resistance , 1996 .

[21]  P.V. Kokotovic,et al.  The joy of feedback: nonlinear and adaptive , 1992, IEEE Control Systems.