Careful prior specification avoids incautious inference for log‐Gaussian Cox point processes

Prior specifications for hyperparameters of random fields in Bayesian spatial point process modelling can have a major impact on the statistical inference and the conclusions made. We consider fitting of log-Gaussian Cox processes to spatial point patterns relative to spatial covariate data. From an ecological point of view, an important aim of the analysis is to assess significant associations between the covariates and the point pattern intensity of a given species. This paper introduces the use of a reparameterised model to facilitate meaningful interpretations of the results and how these depend on hyperprior specifications. The model combines a scaled spatially structured field with an unstructured random field, having a common precision parameter. An additional hyperparameter identifies the fraction of variance explained by the spatially structured term and proper scaling makes the analysis invariant to grid resolution. The hyperparameters are assigned penalised complexity priors, which can be tuned intuitively by user-defined scaling parameters. We illustrate the approach analysing covariate effects on point patterns formed by two rainforest tree species in a study plot on Barro Colorado Island, Panama.

[1]  G. Adler,et al.  Fates of Neotropical Tree Seeds Influenced by Spiny Rats (Proechimys semispinosus) 1 , 1998 .

[2]  Manuel K. Schneider,et al.  Patterns of livestock activity on heterogeneous subalpine pastures reveal distinct responses to spatial autocorrelation, environment and management , 2015, Movement Ecology.

[3]  J. Illian,et al.  Ecological information from spatial patterns of plants: insights from point process theory , 2009 .

[4]  David Kenfack,et al.  Soil resources and topography shape local tree community structure in tropical forests , 2013, Proceedings of the Royal Society B: Biological Sciences.

[5]  A. Gelfand,et al.  Spatial Point Patterns , 2010 .

[6]  J. Gaillard,et al.  Statistical evaluation of parameters estimating autocorrelation and individual heterogeneity in longitudinal studies , 2012 .

[7]  Jean-Paul Chilbs,et al.  Geostatistics , 2000, Technometrics.

[8]  S. Wright,et al.  TESTING THE DISPERSION OF JUVENILES RELATIVE TO ADULTS: A NEW ANALYTIC METHOD' , 1986 .

[9]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[10]  David L. Erickson,et al.  Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest , 2010, PloS one.

[11]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[12]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[13]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[14]  Thiago G. Martins,et al.  Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors , 2014, 1403.4630.

[15]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[16]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[17]  Andrea Riebler,et al.  An intuitive Bayesian spatial model for disease mapping that accounts for scaling , 2016, Statistical methods in medical research.

[18]  David F. R. P. Burslem,et al.  Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology , 2017 .

[19]  Jorge Mateu,et al.  Analysis of multispecies point patterns by using multivariate log‐Gaussian Cox processes , 2016 .

[20]  Stephen P. Hubbell,et al.  Habitat associations of trees and shrubs in a 50‐ha neotropical forest plot , 2001 .

[21]  Kerrie Mengersen,et al.  A Case Study for Modelling Cancer Incidence Using Bayesian Spatio‐Temporal Models , 2015 .

[22]  Håvard Rue,et al.  Hierarchical analysis of spatially autocorrelated ecological data using integrated nested Laplace approximation , 2012 .

[23]  J. Connell The Influence of Interspecific Competition and Other Factors on the Distribution of the Barnacle Chthamalus Stellatus , 1961 .

[24]  Michael S. Rosenberg,et al.  Handbook of spatial point-pattern analysis in ecology , 2015, Int. J. Geogr. Inf. Sci..

[25]  Anthony N. Pettitt,et al.  Comment on the paper: ‘Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations’ by Rue, H. Martino, S. and Chopin, N. , 2009 .

[26]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[27]  Stephen J. Wright,et al.  Light-Gap disturbances, recruitment limitation, and tree diversity in a neotropical forest , 1999, Science.

[28]  Haavard Rue,et al.  A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA) , 2012, 1301.1817.

[29]  Andrea Riebler,et al.  Stomach cancer incidence in Southern Portugal 1998–2006: A spatio‐temporal analysis , 2014, Biometrical journal. Biometrische Zeitschrift.

[30]  Murali Haran,et al.  Dimension reduction and alleviation of confounding for spatial generalized linear mixed models , 2010, 1011.6649.

[31]  Haavard Rue,et al.  Going off grid: computationally efficient inference for log-Gaussian Cox processes , 2016 .

[32]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[33]  J. Hodges,et al.  Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love , 2010 .

[34]  P. Diggle,et al.  Spatial patterns reveal negative density dependence and habitat associations in tropical trees. , 2011, Ecology.

[35]  E. Krainski,et al.  Neighborhood Dependence in Bayesian Spatial Models , 2009, Biometrical journal. Biometrische Zeitschrift.

[36]  Richard Condit,et al.  Tropical Forest Census Plots , 1998, Environmental Intelligence Unit.

[37]  Stephen P. Hubbell,et al.  Soil nutrients influence spatial distributions of tropical tree species , 2007, Proceedings of the National Academy of Sciences.

[38]  Kerrie Mengersen,et al.  The choice of spatial scales and spatial smoothness priors for various spatial patterns. , 2014, Spatial and spatio-temporal epidemiology.

[39]  R. Dial The Unified Neutral Theory of Biodiversity and Biogeography.Monographs in Population Biology, Volume 32. ByStephen P Hubbell.Princeton (New Jersey): Princeton University Press. $75.00 (hardcover); $29.95 (paper). xiv + 375 p; ill.; index. ISBN: 0–691–02129–5 (hc); 0–691–02128–7 (pb). 2001. , 2002 .

[40]  T. Hughes,et al.  Coral reef diversity refutes the neutral theory of biodiversity , 2006, Nature.

[41]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[42]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[43]  Mevin B. Hooten,et al.  Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification , 2015 .

[44]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[45]  L. Held,et al.  Sensitivity analysis in Bayesian generalized linear mixed models for binary data , 2011 .

[46]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[47]  H. Rue,et al.  Scaling intrinsic Gaussian Markov random field priors in spatial modelling , 2014 .

[48]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[49]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[50]  H. Rue,et al.  Fitting a log Gaussian Cox process with temporally varying effects – a case study , 2010 .

[51]  Bettina M. J. Engelbrecht,et al.  Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees , 2013, Proceedings of the National Academy of Sciences.

[52]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[53]  Peter J. Diggle,et al.  INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes , 2012, 1202.1738.

[54]  Nadja Klein,et al.  Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression , 2016 .

[55]  V. Zadnik,et al.  Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease‐Mapping Models , 2006, Biometrics.

[56]  Virgilio Gómez-Rubio,et al.  Spatial Point Patterns: Methodology and Applications with R , 2016 .

[57]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[58]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[59]  L. P. Ho,et al.  Modelling marked point patterns by intensity-marked cox processes , 2008 .

[60]  R. Waagepetersen,et al.  Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. , 2013, Ecology.

[61]  Thorsten Wiegand,et al.  An evaluation of the state of spatial point pattern analysis in ecology , 2016 .

[62]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[63]  Justin M. J. Travis,et al.  Fitting complex ecological point process models with integrated nested Laplace approximation , 2013 .

[64]  R. Waagepetersen,et al.  Modern Statistics for Spatial Point Processes * , 2007 .

[65]  S. Hubbell,et al.  Interspecific variation in primary seed dispersal in a tropical forest , 2008 .

[66]  Norman E. Breslow,et al.  Estimation of Disease Rates in Small Areas: A new Mixed Model for Spatial Dependence , 2000 .