Almost Simple Groups of Lie Type and Symmetric Designs with $\lambda$ Prime

In this article, we investigate symmetric $(v,k,\lambda)$ designs $\mathcal{D}$ with $\lambda$ prime admitting flag-transitive and point-primitive automorphism groups $G$. We prove that if $G$ is an almost simple group with socle a finite simple group of Lie type, then $\mathcal{D}$ is either the point-hyperplane design of a projective space $\mathrm{PG}_{n-1}(q)$, or it is of parameters $(7,4,2)$, $(11,5,2)$, $(11,6,2)$ or $(45,12,3)$.

[1]  Seyed Hassan Alavi,et al.  Flag-transitive block designs with prime replication number and almost simple groups , 2019, Des. Codes Cryptogr..

[2]  Robert Winter,et al.  Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.

[3]  Peter Brown Kleidman The subgroup structure of some finite simple groups , 1987 .

[4]  Gary M. Seitz Flag-Transitive Subgroups of Chevalley Groups , 1973 .

[5]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .

[6]  J. Conway,et al.  Atlas of finite groups : maximal subgroups and ordinary characters for simple groups , 1987 .

[7]  Eugenia O'Reilly Regueiro Flag-transitive symmetric designs , 2003 .

[8]  Eugenia O'Reilly Regueiro Classification of flag-transitive symmetric designs , 2007, Electron. Notes Discret. Math..

[9]  William M. Kantor,et al.  The rank 3 permutation representations of the finite classical groups , 1982 .

[10]  Timothy C. Burness,et al.  Large subgroups of simple groups , 2013, 1311.6733.

[11]  Cheryl E. Praeger,et al.  Imprimitive flag-transitive symmetric designs , 2006, J. Comb. Theory, Ser. A.

[12]  Martin W. Liebeck,et al.  The Primitive Permutation Groups of Odd Degree , 1985 .

[13]  D. Holt,et al.  The Maximal Subgroups of the Low-Dimensional Finite Classical Groups , 2013 .

[14]  W. Kantor Primitive permutation groups of odd degree, and an application to finite projective planes , 1987 .

[15]  Shenglin Zhou,et al.  Affine groups and flag-transitive triplanes , 2012 .

[16]  Ashraf Daneshkhah,et al.  Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups , 2016, Des. Codes Cryptogr..

[17]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[18]  Cheryl E. Praeger The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair , 2007, Des. Codes Cryptogr..

[19]  H. Weyl Permutation Groups , 2022 .

[20]  Seyed Hassan Alavi,et al.  Symmetric designs and four dimensional projective special unitary groups , 2019, Discret. Math..

[21]  S. H. Alavi,et al.  Flag-transitive block designs and unitary groups , 2019, Monatshefte für Mathematik.

[22]  S. H. Alavi,et al.  Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups , 2016 .

[23]  Rudolf Mathon,et al.  On 2-(45, 12, 3) designs , 1996 .

[24]  Seyed Hassan Alavi,et al.  A classification of flag-transitive block designs , 2019, Journal of Algebraic Combinatorics.

[25]  Jan Saxl,et al.  On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups , 2002, J. Comb. Theory, Ser. A.

[26]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[27]  S. H. Alavi,et al.  Symmetric designs and projective special linear groups of dimension at most four , 2020, Journal of Combinatorial Designs.

[28]  William M. Kantor,et al.  Classification of 2-transitive symmetric designs , 1985, Graphs Comb..

[29]  E. Lander Symmetric Designs: An Algebraic Approach , 1983 .

[30]  Anka Golemac,et al.  Primitive symmetric designs with up to 2500 points , 2011 .

[31]  Ulrich Dempwolff Primitive Rank 3 Groups on Symmetric Designs , 2001, Des. Codes Cryptogr..