High-channel-count WDM will eventually be used for short reach optical interconnects since it maximizes link bandwidth and efficiency. An impediment to adoption is the fact that each WDM wavelength currently requires its own DFB laser. The alternative is a single, multi-wavelength laser, but noise, size and/or expense make existing options impractical. In contrast, a new low-noise, diode comb laser based on InAs/GaAs quantum dots provides a practical and timely alternative, albeit in the O-band. Samples are being evaluated in short reach WDM development systems. Tests show this type of Fabry-Perot laser permits >10 Gb/s error-free modulation of 10 to over 50 separate channels, as well as potential for 1.25 Gb/s direct modulation. The paper describes comb laser requirements, noise measurements for external and direct modulation, O-band issues, transmitter photonic circuitry and components, future CMP applications, and optical couplers that may help drive down packaging costs to below a dollar.