THE NEXT GENERATION VIRGO CLUSTER SURVEY. IX. ESTIMATING THE EFFICIENCY OF GALAXY FORMATION ON THE LOWEST-MASS SCALES

The Next Generation Virgo Cluster Survey has recently determined the luminosity function of galaxies in the core of the Virgo cluster down to unprecedented magnitude and surface brightness limits. Comparing simulations of cluster formation to the derived central stellar mass function, we attempt to estimate the stellar-to-halo-mass ratio (SHMR) for dwarf galaxies, as it would have been before they fell into the cluster. This approach ignores several details and complications, e.g., the contribution of ongoing star formation to the present-day stellar mass of cluster members, and the effects of adiabatic contraction and/or violent feedback on the subhalo and cluster potentials. The final results are startlingly simple, however; we find that the trends in the SHMR determined previously for bright galaxies appear to extend down in a scale-invariant way to the faintest objects detected in the survey. These results extend measurements of the formation efficiency of field galaxies by two decades in halo mass or five decades in stellar mass, down to some of the least massive dwarf galaxies known, with stellar masses of ∼ 10 5 M ⊙ ?> .

[1]  Belgium,et al.  The chosen few: the low-mass haloes that host faint galaxies , 2014, 1406.6362.

[2]  P. Côté,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY. XII. STELLAR POPULATIONS AND KINEMATICS OF COMPACT, LOW-MASS EARLY-TYPE GALAXIES FROM GEMINI GMOS-IFU SPECTROSCOPY , 2015, 1504.03714.

[3]  Maria E. S. Pereira,et al.  The Mass–Concentration Relation and the Stellar-to-halo Mass Ratio in the CFHT Stripe 82 Survey , 2015, 1502.00313.

[4]  N. Caldwell,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY. VI. THE KINEMATICS OF ULTRA-COMPACT DWARFS AND GLOBULAR CLUSTERS IN M87 , 2015, 1501.03167.

[5]  Timothy A. Davis,et al.  The ATLAS3D project - XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images , 2014, 1410.0981.

[6]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing , 2014, 1404.6828.

[7]  H. Hoekstra,et al.  CFHTLenS: co-evolution of galaxies and their dark matter haloes , 2013, 1310.6784.

[8]  V. Avila-Reese,et al.  THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR , 2014, 1408.5407.

[9]  A. McConnachie,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY. VIII. THE SPATIAL DISTRIBUTION OF GLOBULAR CLUSTERS IN THE VIRGO CLUSTER , 2014, 1408.2821.

[10]  N. Caldwell,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY. V. MODELING THE DYNAMICS OF M87 WITH THE MADE-TO-MEASURE METHOD , 2014, 1407.2263.

[11]  W. Harris,et al.  The pre-processing of subhaloes in SDSS groups and clusters , 2014, 1404.7504.

[12]  F. V. D. Bosch,et al.  Statistics of dark matter substructure – I. Model and universal fitting functions , 2014, 1403.6827.

[13]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[14]  Astrophysics,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY-INFRARED (NGVS-IR). I. A NEW NEAR-ULTRAVIOLET, OPTICAL, AND NEAR-INFRARED GLOBULAR CLUSTER SELECTION TOOL , 2013, 1311.0873.

[15]  A. Benson,et al.  THE DWARFS BEYOND: THE STELLAR-TO-HALO MASS RELATION FOR A NEW SAMPLE OF INTERMEDIATE REDSHIFT LOW-MASS GALAXIES , 2013, 1310.1079.

[16]  H. Hoekstra,et al.  Galaxy Masses: A Review , 2013, 1309.3276.

[17]  Michal Maciejewski,et al.  Structure finding in cosmological simulations: the state of affairs , 2013, 1304.0585.

[18]  I. Karachentsev,et al.  UPDATED NEARBY GALAXY CATALOG , 2013, 1303.5328.

[19]  P. Côté,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY. IV. NGC 4216: A BOMBARDED SPIRAL IN THE VIRGO CLUSTER , 2013, 1302.6611.

[20]  M. Hudson,et al.  Disentangling satellite galaxy populations using orbit tracking in simulations , 2013, 1301.6757.

[21]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[22]  G. Mamon,et al.  Physical properties underlying observed kinematics of satellite galaxies , 2012, 1207.1647.

[23]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[24]  R. Beaton,et al.  THE M31 VELOCITY VECTOR. II. RADIAL ORBIT TOWARD THE MILKY WAY AND IMPLIED LOCAL GROUP MASS , 2012, 1205.6864.

[25]  A. Finoguenov,et al.  LoCuSS: A DYNAMICAL ANALYSIS OF X-RAY ACTIVE GALACTIC NUCLEI IN LOCAL CLUSTERS , 2012, 1205.6818.

[26]  N. Ball,et al.  THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). I. INTRODUCTION TO THE SURVEY , 2012 .

[27]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[28]  S. White,et al.  The Phoenix Project: the dark side of rich galaxy clusters , 2012, 1201.1940.

[29]  S. Borgani,et al.  Statistics of substructures in dark matter haloes , 2011, 1111.1911.

[30]  G. Mamon,et al.  The velocity modulation of galaxy properties in and near clusters: quantifying the decrease in star formation in backsplash galaxies , 2011, 1106.3062.

[31]  Xiaohu Yang,et al.  AN ANALYTICAL MODEL FOR THE ACCRETION OF DARK MATTER SUBHALOS , 2011, 1104.1757.

[32]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[33]  S. Allen,et al.  X-ray spectroscopy of the Virgo Cluster out to the virial radius , 2011, 1102.2430.

[34]  A. Macciò,et al.  Comparing galactic satellite properties in hydrodynamical and N-body simulations , 2010, 1012.0311.

[35]  F. V. D. Bosch,et al.  An Improved Model for the Dynamical Evolution of Dark Matter Subhaloes , 2010, 1007.0023.

[36]  S. White,et al.  The statistics of the subhalo abundance of dark matter haloes , 2010, 1006.2882.

[37]  S. White,et al.  Galaxy Formation and Evolution , 2010 .

[38]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[39]  Y. Hoffman,et al.  DISSECTING GALAXY FORMATION. II. COMPARING SUBSTRUCTURE IN PURE DARK MATTER AND BARYONIC MODELS , 2010, 1002.4200.

[40]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[41]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[42]  C. Giocoli,et al.  The substructure hierarchy in dark matter haloes , 2009, 0911.0436.

[43]  A. Knebe,et al.  Ahf: AMIGA'S HALO FINDER , 2009, 0904.3662.

[44]  Y. Hoffman,et al.  DISSECTING GALAXY FORMATION. I. COMPARISON BETWEEN PURE DARK MATTER AND BARYONIC MODELS , 2009, 0901.1317.

[45]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[46]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[47]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[48]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[49]  C. Giocoli,et al.  Analytical approach to subhalo population in dark matter haloes , 2007, 0712.1476.

[50]  Onsi Fakhouri,et al.  The nearly universal merger rate of dark matter haloes in ΛCDM cosmology , 2007, 0710.4567.

[51]  M. Blanton,et al.  Testing Cold Dark Matter with the Low-Mass Tully-Fisher Relation , 2007, 0707.3813.

[52]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[53]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[54]  B. Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2006, astro-ph/0608157.

[55]  C. Conselice,et al.  Evolution in the Halo Masses of Isolated Galaxies between z ~ 1 and z ~ 0: From DEEP2 to SDSS , 2006, astro-ph/0607204.

[56]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[57]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[58]  A. Kravtsov,et al.  Fossils of Reionization in the Local Group , 2006, astro-ph/0601401.

[59]  M. W.,et al.  A CURIOUS NEW MILKY WAY SATELLITE IN URSA MAJOR0 , 2006 .

[60]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[61]  D. Hogg,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[62]  A. Babul,et al.  The evolution of substructure in galaxy, group and cluster haloes – III. Comparison with simulations , 2004, astro-ph/0410049.

[63]  A. Babul,et al.  The evolution of substructure in galaxy, group and cluster haloes – II. Global properties , 2004, astro-ph/0410048.

[64]  C. Giocoli,et al.  The mass function and average mass-loss rate of dark matter subhaloes , 2004, astro-ph/0409201.

[65]  Stuart P. D. Gill,et al.  The evolution of substructure - I. A new identification method , 2004, astro-ph/0404258.

[66]  A. Klypin,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004, astro-ph/0401088.

[67]  Joachim Stadel,et al.  Two-body relaxation in cold dark matter simulations , 2003, astro-ph/0304549.

[68]  L. Moscardini,et al.  Properties of cluster satellites in hydrodynamical simulations , 2003, astro-ph/0304375.

[69]  A. Babul,et al.  The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics , 2003, astro-ph/0301612.

[70]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[71]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[72]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[73]  E. Bertschinger Multiscale Gaussian Random Fields and Their Application to Cosmological Simulations , 2001, astro-ph/0103301.

[74]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[75]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[76]  Abraham Loeb,et al.  The Photoevaporation of Dwarf Galaxies during Reionization , 1999, astro-ph/9901114.

[77]  D. McLaughlin,et al.  Evidence in Virgo for the Universal Dark Matter Halo , 1998, astro-ph/9812242.

[78]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[79]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[80]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[81]  George Lake,et al.  On the Destruction and Overmerging of Dark Halos in Dissipationless N-Body Simulations , 1996 .

[82]  Jeff Secker,et al.  A RING MEDIAN FILTER FOR DIGITAL IMAGES , 1995 .

[83]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[84]  A. Sandage,et al.  Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. , 1985 .

[85]  J. Sérsic Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .