Highly Stable Wideband Microwave Extraction by Synchronizing Widely Tunable Optoelectronic Oscillator with Optical Frequency Comb

Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s.

[1]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[2]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[3]  A. Hati,et al.  Sub-femtosecond absolute timing jitter with a 10 GHz hybrid photonic-microwave oscillator , 2012 .

[4]  M. Kirchner,et al.  Generation of ultrastable microwaves via optical frequency division , 2011, 1101.3616.

[5]  K Feder,et al.  Fiber-laser-based frequency comb with a tunable repetition rate. , 2004, Optics express.

[6]  R. Holzwarth,et al.  Femtosecond optical frequency combs , 2009 .

[7]  Weiwei Hu,et al.  Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter. , 2013, Optics letters.

[8]  L. Maleki Sources: The optoelectronic oscillator , 2011 .

[9]  F. Kärtner,et al.  Drift-free femtosecond timing synchronization of remote optical and microwave sources , 2008 .

[10]  E. A. Curtis,et al.  An Optical Clock Based on a Single Trapped 199Hg+ Ion , 2001, Science.

[11]  Franz X Kärtner,et al.  High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. , 2007, Optics letters.

[12]  G. D. Alley,et al.  An Ultra Low Noise Microwave Synthesizer , 1979 .

[13]  M. Lours,et al.  Sub-100 attoseconds stability optics-to-microwave synchronization , 2010 .

[14]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[15]  Weimin Zhou,et al.  Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level , 2005, IEEE Transactions on Microwave Theory and Techniques.

[16]  Rüdiger Paschotta,et al.  Timing jitter and phase noiseof mode-locked fiber lasers. , 2010, Optics express.

[17]  L. Maleki,et al.  Optoelectronic oscillator for photonic systems , 1996 .

[18]  E. A. Curtis,et al.  An Optical Clock Based on a Single Trapped 199 Hg 1 , 2022 .

[19]  L. Maleki,et al.  Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system , 2008, 2008 IEEE International Frequency Control Symposium.

[20]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[21]  E. Rubiola,et al.  The purest microwave oscillations , 2013, Nature Photonics.

[22]  H. Kiuchi A highly stable crystal oscillator applied to the VLBI reference clock , 1996 .

[23]  Giuseppe Marra,et al.  AN OPTICAL CLOCK BASED ON A SINGLE TRAPPED 88Sr+ ION , 2009 .

[24]  R. S. Raven,et al.  Requirements on master oscillators for coherent radar , 1966 .

[25]  P. Gill Ultrafast optics femtosecond timing distribution. , 2008 .

[26]  A Hati,et al.  Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes , 2011, IEEE Photonics Journal.

[27]  Kwangyun Jung,et al.  Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. , 2012, Optics letters.