On Fractional Moments of Multilook Polarimetric Whitening Filter for Polarimetric SAR Data

Many multivariate statistical distributions have been derived using the well-known product model to stochastically model polSAR data. One important factor in their utilization is the estimation of their texture parameters. Recently, it has been shown that the method of matrix log cumulants (MoMLC) for multilook PolSAR statistical distributions results in estimators with low bias and variance properties. This method is becoming increasingly popular and can be regarded as state of the art. However, some distributions (e.g., G distribution) do not have closed-form MLC expressions, making the application of MoMLC a challenge. It is therefore desirable to have alternative parameter estimation methods. In this paper, we propose a new estimation method based on fractional moments of the multilook polarimetric whitening filter (MPWF). This results in estimators with mean square error that is even lower than the MoMLC-based estimators. In addition, the mathematical expressions of the estimators are computationally less complicated than MoMLC-based estimators. The proposed estimators can be easily derived for all commonly occurring multilook PolSAR distributions but have been only given for G, K, and G0 distributions in this paper. Comparisons are made with other known estimators for these distributions using simulated and real PolSAR data. For real data, formal goodness-of-fit testing, which is based on MLCs, has been used to assess the fitting accuracy of G, K, and G0 models using different estimators.

[1]  Torbjørn Eltoft,et al.  A multitexture model for multilook polarimetric radar data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Stian Normann Anfinsen,et al.  Statistical Analysis of Multilook Polarimetric Radar Images with the Mellin Transform , 2010 .

[3]  Torbjørn Eltoft,et al.  Non-Gaussian signal statistics in ocean SAR imagery , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  Torbjørn Eltoft,et al.  Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  K. Tragl,et al.  Polarimetric radar backscattering from reciprocal random targets , 1990 .

[6]  Stian Normann Anfinsen On the Supremacy of Logging , 2011 .

[7]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[9]  Torbjørn Eltoft,et al.  Goodness-of-Fit Tests for Multilook Polarimetric Radar Data Based on the Mellin Transform , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[11]  Henri Maître,et al.  A new statistical model for Markovian classification of urban areas in high-resolution SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Raffaella Guida,et al.  Application of Mellin-Kind Statistics to Polarimetric ${\cal G}$ Distribution for SAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[14]  K. Ranson,et al.  K-distribution for multi-look processed polarimetric SAR imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Stian Normann Anfinsen,et al.  A Complete Coverage of Log-Cumulant Space in Terms of Distributions for Polarimetric SAR Data , 2011 .

[16]  Torbjørn Eltoft,et al.  Scale Mixture of Gaussian Modelling of Polarimetric SAR Data , 2006, Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006.

[17]  Raffaella Guida,et al.  On Single-Look Multivariate $ {\cal G}$ Distribution for PolSAR Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Raffaella Guida,et al.  The new form of G distribution for single-look PolSAR data , 2012 .

[19]  N. Giri,et al.  On the Complex Analogues of $T^2$- and $R^2$-Tests , 1965 .

[20]  Anthony P. Doulgeris,et al.  Scale Mixture of Gaussians Modelling of Polarimetric SAR Data , 2006 .

[21]  Sarah Rothstein Jacobians Of Matrix Transformations And Functions Of Matrix Argument , 2016 .

[22]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[23]  Corina da Costa Freitas,et al.  Classifying Multifrequency Fully Polarimetric Imagery With Multiple Sources of Statistical Evidence and Contextual Information , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Armand Lopes,et al.  Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution , 1997, IEEE Trans. Geosci. Remote. Sens..

[25]  Chris J. Oliver,et al.  Rain forest classification based on SAR texture , 2000, IEEE Trans. Geosci. Remote. Sens..

[26]  Guoqing Liu,et al.  The multilook polarimetric whitening filter (MPWF) for intensity speckle reduction in polarimetric SAR images , 1998, IEEE Trans. Geosci. Remote. Sens..

[27]  Brian Peacock,et al.  Statistical Distributions: Forbes/Statistical Distributions 4E , 2010 .

[28]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Torbjørn Eltoft,et al.  Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[30]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .