Application of homogenization theory to the study of trabecular bone mechanics.

[1]  Alan N. Gent,et al.  The deformation of foamed elastic materials , 1959 .

[2]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[3]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[4]  Upendra J. Counto Discussion: The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete* , 1964 .

[5]  W. Ko Deformations of Foamed Elastomers , 1965 .

[6]  O. Ishai,et al.  Elastic properties of filled and porous epoxy composites , 1967 .

[7]  J. M. Lederman The prediction of the tensile properties of flexible foams , 1971 .

[8]  R M Rose,et al.  A structural model for the mechanical behavior of trabecular bone. , 1973, Journal of biomechanics.

[9]  S. V. Kanakkanatt Mechanical Anisotropy of Open-Cell Foams , 1973 .

[10]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[11]  I. Singh The architecture of cancellous bone. , 1978, Journal of anatomy.

[12]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[13]  Relationship between modulus and density for high‐density closed‐cell thermoplastic foams , 1980 .

[14]  N. C. Hilyard,et al.  Mechanics of cellular plastics , 1982 .

[15]  J. Lewis,et al.  Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. , 1982, Journal of biomechanical engineering.

[16]  Andrej Cherkaev,et al.  Regularization of optimal design problems for bars and plates, part 1 , 1982 .

[17]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Andrej Cherkaev,et al.  Regularization of optimal design problems for bars and plates, part 2 , 1982 .

[19]  E Y Chao,et al.  A survey of finite element analysis in orthopedic biomechanics: the first decade. , 1983, Journal of biomechanics.

[20]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[21]  M. Kleerekoper,et al.  Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. , 1983, The Journal of clinical investigation.

[22]  W. Hayes,et al.  Finite element analysis of a three-dimensional open-celled model for trabecular bone. , 1985, Journal of biomechanical engineering.

[23]  L. Gibson The mechanical behaviour of cancellous bone. , 1985, Journal of biomechanics.

[24]  Richard M. Christensen,et al.  Mechanics of low density materials , 1986 .

[25]  Noboru Kikuchi Finite Element Methods in Mechanics , 1986 .

[26]  S. Goldstein The mechanical properties of trabecular bone: dependence on anatomic location and function. , 1987, Journal of biomechanics.

[27]  D P Fyhrie,et al.  Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. , 1987, Journal of biomechanics.

[28]  D M Nunamaker,et al.  Trabecular bone remodeling around smooth and porous implants in an equine patellar model. , 1987, Journal of biomechanics.

[29]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[30]  H. Grootenboer,et al.  Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.

[31]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[32]  L. Gibson,et al.  Anisotropy of foams , 1988 .

[33]  J. M. Crolet,et al.  A numerical model of anisotropic elastic properties of osteons , 1988 .

[34]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[35]  S. Goldstein,et al.  The direct examination of three‐dimensional bone architecture in vitro by computed tomography , 1989, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[36]  Predicting trabecular bone strength and micro-strain using homogenization theory , 1989 .

[37]  An analysis of trabecuar bone micro-mechanics using homogenization theory with comparison to experimental results , 1989 .

[38]  J. Lewis,et al.  Experimental method for the measurement of the elastic modulus of trabecular bone tissue , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[39]  L. S. Matthews,et al.  Comparison of the trabecular and cortical tissue moduli from human iliac crests , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[40]  S. Goldstein,et al.  The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. , 1990, Journal of biomechanics.

[41]  Study of microstructural analysis methods. Implications for modeling trabecular bone microstructure , 1990 .

[42]  Miranda Guedes,et al.  Nonlinear computational models for composite materials using homogenization. , 1990 .