Multidimensional pseudo-spectral methods on lattice grids
暂无分享,去创建一个
[1] Dominique Maisonneuve. Recherche et Utilisation des “Bons Treillis.” Programmation et Résultats Numériques , 1972 .
[2] G. Kedem,et al. A table of good lattice points in three dimensions , 1974 .
[3] M. Bourdeau,et al. Tables of good lattices in four and five dimensions , 1985 .
[4] I. Sloan,et al. Lattice methods for multiple integration: theory, error analysis and examples , 1987 .
[5] R. Kosloff,et al. Optimal choice of grid points in multidimensional pseudospectral Fourier methods , 1988 .
[6] J. N. Lyness. An Introduction to Lattice Rules and their Generator Matrices , 1989 .
[7] J. N. Lyness,et al. An algorithm for finding optimal integration lattices of composite order , 1992 .
[8] K. Hallatschek. Fouriertransformation auf dünnen Gittern mit hierarchischen Basen , 1992 .
[9] J. N. Lyness,et al. Lattice rules by component scaling , 1993 .
[10] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[11] Patrick Keast,et al. Application of the Smith Normal Form to the Structure of Lattice Rules , 1995, SIAM J. Matrix Anal. Appl..
[12] Ronald Cools,et al. Minimal cubature formulae of trigonometric degree , 1996, Math. Comput..
[13] Ronald Cools,et al. Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree , 2001, Math. Comput..
[14] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[15] Ronald Cools,et al. Five- and six-dimensional lattice rules generated by structured matrices , 2003, J. Complex..
[16] Tor Sørevik,et al. Four-dimensional lattice rules generated by skew-circulant matrices , 2004, Math. Comput..
[17] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[18] Åke Björck,et al. The calculation of linear least squares problems , 2004, Acta Numerica.
[19] Harry Yserentant,et al. On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives , 2004, Numerische Mathematik.
[20] Harry Yserentant,et al. Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.
[21] Tor Sørevik,et al. A search program for finding optimal integration lattices , 2005, Computing.
[22] I. Sloan,et al. Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .
[23] H. Munthe-Kaas. On group Fourier analysis and symmetry preserving discretizations of PDEs , 2006 .
[24] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[25] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[26] Tor Sørevik,et al. Five-dimensional K-optimal lattice rules , 2006, Math. Comput..
[27] M. Griebel,et al. Sparse grids for the Schrödinger equation , 2007 .
[28] Vasile Gradinaru,et al. Fourier transform on sparse grids: Code design and the time dependent Schrödinger equation , 2007, Computing.
[29] Vasile Gradinaru,et al. Strang Splitting for the Time-Dependent Schrödinger Equation on Sparse Grids , 2007, SIAM J. Numer. Anal..
[30] Henryk Wozniakowski,et al. Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..
[31] M. Aurada,et al. Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.