Two‐step synthesis process for high‐entropy diboride powders

[1]  J. Qiu,et al.  Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction , 2019, Journal of the European Ceramic Society.

[2]  T. Wen,et al.  Synthesis and characterization of the ternary metal diboride solid‐solution nanopowders , 2019, Journal of the American Ceramic Society.

[3]  Caizhuang Wang,et al.  First‐principles study, fabrication, and characterization of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramic , 2019, Journal of the American Ceramic Society.

[4]  Shikuan Sun,et al.  Dense high-entropy boride ceramics with ultra-high hardness , 2019, Scripta Materialia.

[5]  G. Hilmas,et al.  Synthesis of single-phase high-entropy carbide powders , 2019, Scripta Materialia.

[6]  T. Wen,et al.  Synthesis of superfine high-entropy metal diboride powders , 2019, Scripta Materialia.

[7]  R. Orrú,et al.  Novel processing route for the fabrication of bulk high-entropy metal diborides , 2019, Scripta Materialia.

[8]  Cormac Toher,et al.  High-entropy high-hardness metal carbides discovered by entropy descriptors , 2018, Nature Communications.

[9]  Ya-Ping Wang,et al.  Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) , 2018 .

[10]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[11]  Jun Hu,et al.  Mechanochemical‐Assisted Synthesis of High‐Entropy Metal Nitride via a Soft Urea Strategy , 2018, Advanced materials.

[12]  M. Nastasi,et al.  (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics with low thermal conductivity , 2018, Journal of the American Ceramic Society.

[13]  Y. Sakka,et al.  Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review , 2018 .

[14]  H. Morito,et al.  Low-temperature synthesis of ZrB2 powder from oxides using Na , 2017 .

[15]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[16]  J. Zou,et al.  Synthesis of ultra-refractory transition metal diboride compounds , 2016 .

[17]  Yanchun Zhou,et al.  General Trends in Electronic Structure, Stability, Chemical Bonding and Mechanical Properties of Ultrahigh Temperature Ceramics TMB2 (TM = transition metal) , 2015 .

[18]  Jung-Hun Kim,et al.  Synthesis of ZrB2 powders by carbothermal and borothermal reduction , 2012 .

[19]  Guo‐Jun Zhang,et al.  Synthesis of submicrometer HfB2 powder and its densification , 2012 .

[20]  Hailong Wang,et al.  Nano‐Hafnium Diboride Powders Synthesized Using a Spark Plasma Sintering Apparatus , 2012 .

[21]  G. Hilmas,et al.  Effect of Starting Particle Size and Oxygen Content on Densification of ZrB2 , 2011 .

[22]  G. Hilmas,et al.  Densification Behavior and Microstructure Evolution of Hot-pressed HfB2 , 2011 .

[23]  G. Hilmas,et al.  Thermophysical Properties of ZrB2-Based Ceramics , 2008 .

[24]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[25]  A. Leithe-Jasper,et al.  Some properties of single-crystal boron carbide , 2004 .

[26]  Sheikh A. Akbar,et al.  Electrical Resistivity of Titanium Diboride and Zirconium Diboride , 1995 .