Knaster and friends II: The C-sequence number

Motivated by a characterization of weakly compact cardinals due to Todorcevic, we introduce a new cardinal characteristic, the C-sequence number, which can be seen as a measure of the compactness of a regular uncountable cardinal. We prove a number of ZFC and independence results about the C-sequence number and its relationship with large cardinals, stationary reflection, and square principles. We then introduce and study the more general C-sequence spectrum and uncover some tight connections between the C-sequence spectrum and the strong coloring principle U(...), introduced in Part I of this series.

[1]  Chris Lambie-Hanson,et al.  Simultaneous stationary reflection and square sequences , 2017, J. Math. Log..

[2]  James Cummings,et al.  Squares, scales and stationary Reflection , 2001, J. Math. Log..

[3]  Saharon Shelah,et al.  The consistency strength of “every stationary set reflects” , 1989 .

[4]  Assaf Rinot,et al.  Chain conditions of Products, and Weakly Compact Cardinals , 2014, Bull. Symb. Log..

[5]  Moti Gitik,et al.  Prikry-Type Forcings , 2010 .

[6]  Kenneth Kunen,et al.  Saturated ideals , 1978, Journal of Symbolic Logic.

[7]  STATIONARY REFLECTION , 2018, The Journal of Symbolic Logic.

[8]  K. N. Dollman,et al.  - 1 , 1743 .

[9]  John R. Steel,et al.  Equiconsistencies at subcompact cardinals , 2016, Arch. Math. Log..

[10]  Thomas Jech Stationary subsets of inaccessible cardinals , 1983 .

[11]  B. M. Fulk MATH , 1992 .

[12]  Moti Gitik,et al.  On SCH and the approachability property , 2008 .

[13]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[14]  M. Varacallo,et al.  2019 , 2019, Journal of Surgical Orthopaedic Advances.

[15]  Stevo Todorcevic,et al.  Partitioning pairs of countable ordinals , 1987 .

[16]  Assaf Rinot,et al.  Partitioning a reflecting stationary set , 2019, 1907.08581.

[17]  J. Cummings,et al.  Martin's maximum and weak square , 2011 .

[18]  Chris Lambie-Hanson Squares and narrow Systems , 2017, J. Symb. Log..

[19]  H. Gaifman,et al.  Symbolic Logic , 1881, Nature.

[20]  Characterizing large cardinals in terms of layered posets , 2015, Ann. Pure Appl. Log..

[21]  Assaf Rinot,et al.  Knaster and friends I: closed colorings and precalibers , 2018, Algebra universalis.

[22]  Ernest Schimmerling,et al.  An equiconsistency Result on Partial squares , 2011, J. Math. Log..

[23]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[24]  A. M. Brodsky,et al.  Distributive Aronszajn trees , 2017, Fundamenta Mathematicae.

[25]  Philipp Lücke,et al.  SQUARES, ASCENT PATHS, AND CHAIN CONDITIONS , 2017, The Journal of Symbolic Logic.

[26]  S. Todorcevic Walks On Ordinals And Their Characteristics , 2007 .