Mine Loadometer License Plate Recognition Based on MFF-DS

The result of license plate recognition with a single feature is unsatisfactory. A multi-feature fusion method based on D-S evidence theory is proposed to improve results of mine loadometer license plate recognition. Firstly, three kinds of features including contour, projection and trellis-coded are extracted from the vehicle plate character image. Then the Basic Probability Assignment (BPA) is defined to get the credibility of recognition results by using the multi-class Support Vector Machine (SVM) with one-against-one method. Finally, D-S evidence theory is employed to integrate the credibility of evidences for making a final decision. The experimental results show that the multi-feature fusion method has higher recognition rate, fault tolerance and robustness.