Particle swarm optimized hybrid fuzzy precompensated trajectory control of rigid-flexible manipulator

Light-weight flexible arms will most likely constitute the next generation robots due to their large payload carrying capacities at high speeds and less power demand. Control problem of robots with flexible members is more complex compared to rigid robots due to vibrations during the motion. This paper presents the optimization technique inspired by social behavior of bird flocking to optimize hybrid Fuzzy Precompensated Proportional - Derivative (PD) controller in trajectory control of two link rigid-flexible manipulator. Numerical simulation using the dynamic model of two link rigid-flexible manipulator shows the effectiveness of the approach in trajectory tracking problems and the use of fuzzy precompensation has superior performance in terms of improvement in transient and steady state response, robustness to variations in loading conditions and ease to use in practice. Comparative evaluation with respect to genetic algorithm based optimization is presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using hybrid Fuzzy Precompensated Proportional - Derivative controller with particle swarm optimization.

[1]  M. J. Nigam,et al.  Bacterial Foraging Optimized Hybrid Fuzzy Precompensated PD Control of Two Link Rigid-Flexible Manipulator , 2009, Int. J. Comput. Intell. Syst..

[2]  Giovanni Ulivi,et al.  Exact modeling of the flexible slewing link , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[3]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[4]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Feng-Li Lian,et al.  Nonlinear adaptive control for flexible-link manipulators , 1997, IEEE Trans. Robotics Autom..

[6]  Dong-Soo Kwon,et al.  A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator , 1994 .

[7]  J. Sasiadek,et al.  METHODS OF TRAJECTORY TRACKING FOR FLEXIBLE LINK MANIPULATORS , 2002 .

[8]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[9]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[10]  J. Sasiadek,et al.  Direct, optimal, stochastic and fuzzy control of a two-link flexible manipulator , 2000 .

[11]  Fuzzy Logic in Control Systems : Fuzzy Logic , 2022 .

[12]  R. E. Rink,et al.  Composite pseudolink end-point control of flexible manipulators , 1990, IEEE Trans. Syst. Man Cybern..

[13]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[14]  M. Osman Tokhi,et al.  GA-based Neural Fuzzy Control of Flexible-link Manipulators , 2006, Eng. Lett..

[15]  R. Daniel,et al.  Perturbation Techniques for Flexible Manipulators , 1991 .

[16]  H. J. Yeo FuzzyAdaptive Force Control of Industrial Robot Manipulators with Position Servos , 1995 .

[17]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[18]  오상록,et al.  위치서보를 가진 산업용 로보트의 퍼지 적응 힘 제어 ( Fuzzy Adaptive Force Control of Industrial Robot Manipulators with Position Servos ) , 1995 .

[19]  Xue Yang,et al.  Study on fuzzy PD control of planar two-link flexible manipulator , 2002, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings..

[20]  Yoshifumi Morita,et al.  Robust Trajectory Tracking Control of Elastic Robot Manipulators , 1997 .

[21]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[22]  Ali Galip Ulsoy,et al.  Dynamic modeling of constrained flexible robot arms for controller design , 1991 .

[23]  A. De Luca,et al.  Rest-to-rest motion of a two-link robot with a flexible forearm , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[24]  Alan S. Morris,et al.  Genetic Algorithm Tuned Fuzzy Logic Controller for a Robot Arm with Two-link Flexibility and Two-joint Elasticity , 2007, J. Intell. Robotic Syst..

[25]  Alan S. Morris,et al.  Fuzzy and neuro-fuzzy approaches to control a flexible single-link manipulator , 2003 .

[26]  Wayne J. Book,et al.  Modeling, design, and control of flexible manipulator arms: a tutorial review , 1990, 29th IEEE Conference on Decision and Control.

[27]  Lih-Chang Lin,et al.  A composite adaptive control with flexible quantity feedback for flexible-link manipulators , 1996, J. Field Robotics.

[28]  I. Kalaykov,et al.  Time-optimal sliding mode control of robot manipulator , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[29]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[30]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[31]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[32]  Ahmet S. Yigit,et al.  On the Stability of PD Control for a Two-Link Rigid-Flexible Manipulator , 1994 .

[33]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.