3D Scaffolded Nickel–Tin Li‐Ion Anodes with Enhanced Cyclability

A 3D mechanically stable scaffold is shown to accommodate the volume change of a high-specific-capacity nickel-tin nanocomposite during operation as a Li-ion battery anode. The nickel-tin anode is supported by an electrochemically inactive conductive scaffold with an engineered free volume and controlled characteristic dimensions, which engender the electrode with significantly improved cyclability.

[1]  B. Scrosati,et al.  A high capacity, template-electroplated NiSn intermetallic electrode for lithium ion battery , 2011 .

[2]  Z. Barkay,et al.  Nanotin alloys supported by multiwall carbon nanotubes as high-capacity and safer anode materials for EV lithium batteries , 2014 .

[3]  Hui Zhao,et al.  Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries , 2015 .

[4]  Deren Yang,et al.  Cu–Sn Core–Shell Nanowire Arrays as Three-Dimensional Electrodes for Lithium-Ion Batteries , 2011 .

[5]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[6]  Haoshen Zhou,et al.  High-Rate Lithium Ion Batteries with Flat Plateau Based on Self-Nanoporous Structure of Tin Electrode , 2007 .

[7]  Nae-Lih Wu,et al.  Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy , 2011 .

[8]  Cho-Long Lee,et al.  Highly Reversible Sn-Co Alloy Anode Using Porous Cu Foam Substrate for Li-Ion Batteries , 2012 .

[9]  S. Hackney,et al.  Mechanical stability for nanostructured Sn- and Si-based anodes , 2011 .

[10]  Hee‐Tae Jung,et al.  High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries , 2015 .

[11]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[12]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[13]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[14]  G. Sumanasekera,et al.  Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. , 2009, Nano letters.

[15]  B. Scrosati,et al.  Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries , 2006 .

[16]  Y. Park,et al.  Nickel–tin foam with nanostructured walls for rechargeable lithium battery , 2011 .

[17]  Chunru Wang,et al.  Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries. , 2015, Nanoscale.

[18]  Z. Du,et al.  Nanocone-arrays supported tin-based anode materials for lithium-ion battery , 2011 .

[19]  Heon-Cheol Shin,et al.  Three‐Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries , 2005 .

[20]  Ling Huang,et al.  Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries , 2011 .

[21]  Tohru Watanabe,et al.  Metastable Phases Formed in Ni-Sn Electroplated Alloy Film , 1999 .

[22]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[23]  M. Thackeray,et al.  Copper-tin anodes for rechargeable lithium batteries : an example of the matrix effect in an intermetallic system. , 1998 .

[24]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[25]  Xiaohua Ma,et al.  High-performance Sn–Ni alloy nanorod electrodes prepared by electrodeposition for lithium ion rechargeable batteries , 2012, Journal of Applied Electrochemistry.

[26]  J. Goodenough,et al.  Nickel foam supported SnCo alloy film as anode for lithium ion batteries , 2011 .

[27]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[28]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of chemical research.

[29]  B. Scrosati,et al.  The Ni3Sn4 intermetallic as a novel electrode in lithium cells , 2005 .

[30]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[31]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[32]  T. Osaka,et al.  Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling , 2005 .

[33]  K. Kanamura,et al.  Design of a micro-pattern structure for a three dimensionally macroporous Sn-Ni alloy anode with high areal capacity. , 2011, Chemical communications.

[34]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[35]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[36]  Ruoxu Lin,et al.  Nickel Nanocone‐Array Supported Silicon Anode for High‐Performance Lithium‐Ion Batteries , 2010, Advanced materials.

[37]  Ling Huang,et al.  Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries , 2007 .

[38]  Jun Chen,et al.  Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. , 2014, Nano letters.

[39]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[40]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[41]  Zhiqun Lin,et al.  Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery , 2015 .

[42]  Jiajun Wang,et al.  In situ three-dimensional synchrotron X-Ray nanotomography of the (de)lithiation processes in tin anodes. , 2014, Angewandte Chemie.

[43]  Robert Furstenberg,et al.  Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals , 2007 .

[44]  Ling Huang,et al.  Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes , 2009 .

[45]  Xianjun Zhu,et al.  Three-dimensional reticular tin–manganese oxide composite anode materials for lithium ion batteries , 2010 .

[46]  Jean-Pierre Pereira-Ramos,et al.  High‐Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li‐Ion Batteries , 2012, Advanced materials.

[47]  Ling Huang,et al.  Nanoscale tin-based intermetallic electrodes encapsulated in microporous copper substrate as the negative electrode with a high rate capacity and a long cycleability for lithium-ion batteries , 2013 .

[48]  Y. Kang,et al.  General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability. , 2015, Small.

[49]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[50]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[51]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[52]  Yang Liu,et al.  In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. , 2011, Nano letters.

[53]  K. Kanamura,et al.  Three-dimensionally ordered macroporous Ni–Sn anode for lithium batteries , 2009 .

[54]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[55]  Wei Wang,et al.  Enhancing Ni–Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces , 2011 .

[56]  J. Dahn,et al.  Effects of Impurities on the Electrochemical Properties of LiCoO2 , 1993 .

[57]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[58]  H. Munakata,et al.  Highly patterned cylindrical Ni–Sn alloys with 3-dimensionally ordered macroporous structure as anodes for lithium batteries , 2010 .

[59]  Claus Daniel,et al.  In Situ XRD of Thin Film Tin Electrodes for Lithium Ion Batteries , 2012 .

[60]  Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon , 2012, 1201.1428.

[61]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[62]  Junhong Chen,et al.  A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. , 2015, Angewandte Chemie.

[63]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[64]  A. Luciano,et al.  Power sources. , 1995, Obstetrics and gynecology clinics of North America.

[65]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .