Multidimensional Projection with Radial Basis Function and Control Points Selection
暂无分享,去创建一个
Mario Costa Sousa | Luis Gustavo Nonato | Faramarz F. Samavati | Emilio Vital Brazil | Elisa Amorim | L. G. Nonato | F. Samavati | E. V. Brazil | M. Sousa | Elisa Amorim
[1] Jeanny Hérault,et al. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets , 1997, IEEE Trans. Neural Networks.
[2] Joshua B. Tenenbaum,et al. Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.
[3] Christos Faloutsos,et al. FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.
[4] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[5] Trevor F. Cox,et al. Metric multidimensional scaling , 2000 .
[6] Gerik Scheuermann,et al. Brushing of Attribute Clouds for the Visualization of Multivariate Data , 2008, IEEE Transactions on Visualization and Computer Graphics.
[7] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[8] W. Hays,et al. Multidimensional unfolding: Determining the dimensionality of ranked preference data , 1960 .
[9] T. Kohonen,et al. Visual Explorations in Finance with Self-Organizing Maps , 1998 .
[10] Rosane Minghim,et al. Text Map Explorer: a Tool to Create and Explore Document Maps , 2006, Tenth International Conference on Information Visualisation (IV'06).
[11] Marc Olano,et al. Glimmer: Multilevel MDS on the GPU , 2009, IEEE Transactions on Visualization and Computer Graphics.
[12] Cláudio T. Silva,et al. Interactive Vector Field Feature Identification , 2010, IEEE Transactions on Visualization and Computer Graphics.
[13] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[14] Cláudio T. Silva,et al. Two-Phase Mapping for Projecting Massive Data Sets , 2010, IEEE Transactions on Visualization and Computer Graphics.
[15] Charl P. Botha,et al. Piece wise Laplacian‐based Projection for Interactive Data Exploration and Organization , 2011, Comput. Graph. Forum.
[16] I. Jolliffe. Principal Component Analysis , 2002 .
[17] Jing Hua,et al. Exemplar-based Visualization of Large Document Corpus (InfoVis2009-1115) , 2009, IEEE Transactions on Visualization and Computer Graphics.
[18] Haim Levkowitz,et al. Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.
[19] Joshua B. Tenenbaum,et al. Sparse multidimensional scaling using land-mark points , 2004 .
[20] Shang-Liang Chen,et al. Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.
[21] Rosane Minghim,et al. On Improved Projection Techniques to Support Visual Exploration of Multi-Dimensional Data Sets , 2003, Inf. Vis..
[22] Luis Gustavo Nonato,et al. Local Affine Multidimensional Projection , 2011, IEEE Transactions on Visualization and Computer Graphics.
[23] Haim Levkowitz,et al. From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..
[24] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[25] John W. Sammon,et al. A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.
[26] Sheng Chen,et al. Regularized orthogonal least squares algorithm for constructing radial basis function networks , 1996 .