Feature-Based Visualization of Multifields

Feature-based techniques are one of the main categories of methods used in scientific visualization. Features are structures in a dataset that are meaningful within the scientific or engineering context of the dataset. Extracted features can be visualized directly, or they can be used indirectly for modifying another type of visualization. In multifield data, each of the component fields can be searched for features, but in addition, there can be features of the multifield which rely on information form several of its components and which cannot be found by searching in a single field. In this chapter we give a survey of feature-based visualization of multifields, taking both of these feature types into account.

[1]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[2]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[3]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[4]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[5]  Heidrun Schumann,et al.  Visualizing Statistical Properties of Smoothly Brushed Data Subsets , 2008, 2008 12th International Conference Information Visualisation.

[6]  Helwig Hauser,et al.  Visualization of Multi‐Variate Scientific Data , 2009, Comput. Graph. Forum.

[7]  Charl P. Botha,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2007) Interactive Visualization of Multi-field Medical Data Using Linked Physical and Feature-space Views , 2022 .

[8]  Harald Obermaier,et al.  Volume Deformations in Grid‐Less Flow Simulations , 2009, Comput. Graph. Forum.

[9]  Kwan-Liu Ma,et al.  Efficient Streamline, Streamribbon, and Streamtube Constructions on Unstructured Grids , 1996, IEEE Trans. Vis. Comput. Graph..

[10]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[11]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[12]  Xavier Tricoche,et al.  Automatic Detection and Visualization of Distinctive Structures in 3D Unsteady Multi‐fields , 2008, Comput. Graph. Forum.

[13]  Filip Sadlo,et al.  Topology-guided Visualization of Constrained Vector Fields , 2007, Topology-based Methods in Visualization.

[14]  Helwig Hauser,et al.  Parallel Vectors Criteria for Unsteady Flow Vortices , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Hans-Christian Hege,et al.  Coherent structures in a transitional flow around a backward-facing step , 2003 .

[16]  Vijay Natarajan,et al.  A Gradient‐Based Comparison Measure for Visual analysis of Multifield Data , 2011, Comput. Graph. Forum.

[17]  Hans-Peter Seidel,et al.  Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[18]  Vijay Natarajan,et al.  Relation-Aware Isosurface Extraction in Multifield Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[19]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[20]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[21]  David C. Banks,et al.  Clustered Ensemble Averaging: A Technique for Visualizing Qualitative Features of , 2006 .

[22]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[24]  Kenneth I. Joy,et al.  Variable Interactions in Query-Driven Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  Chris Henze Feature detection in linked derived spaces , 1998 .

[26]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[27]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[28]  Simon Stegmaier,et al.  Opening the can of worms: an exploration tool for vortical flows , 2005, VIS 05. IEEE Visualization, 2005..

[29]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[30]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[31]  Bernhard Preim,et al.  Map Displays for the Analysis of Scalar Data on Cerebral Aneurysm Surfaces , 2009, Comput. Graph. Forum.

[32]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[33]  Hans J. W. Spoelder,et al.  Visualization of time-dependent data with feature tracking and event detection , 2001, The Visual Computer.

[34]  Mie Sato,et al.  A case study in selective visualization of unsteady 3D flow , 2002, IEEE Visualization, 2002. VIS 2002..

[35]  David L. Kao,et al.  Strategy for seeding 3D streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[36]  Gerik Scheuermann,et al.  Topology-based Methods in Visualization , 2007, Topology-based Methods in Visualization.

[37]  Valerio Pascucci,et al.  Local and global comparison of continuous functions , 2004, IEEE Visualization 2004.