Signaling pathways in intestinal development and cancer.

The study of the epithelium of the adult mammalian intestine touches upon many modern aspects of biology. The epithelium is in a constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. The Wnt, TGF-beta, BMP, Notch, and Par polarity pathways are the major players in homeostatic control of the adult epithelium. Several hereditary cancer syndromes deregulate these same signaling cascades through mutational (in)activation. Moreover, these mutations often also occur in sporadic tumors. Thus symmetry exists between the roles that these signaling pathways play in physiology and in cancer of the intestine. This is particularly evident for the Wnt/APC pathway, for which the mammalian intestine has become one of the most-studied paradigms. Here, we integrate recent knowledge of the molecular inner workings of the prototype signaling cascades with their specific roles in intestinal epithelial homeostasis and in neoplastic transformation of the epithelium.

[1]  M. Stratton,et al.  A serine/threonine kinase gene defective in Peutz–Jeghers syndrome , 1998, Nature.

[2]  Peter K. Sorger,et al.  A role for the Adenomatous Polyposis Coli protein in chromosome segregation , 2001, Nature Cell Biology.

[3]  A J Krush,et al.  Increased risk of cancer in the Peutz-Jeghers syndrome. , 1987, The New England journal of medicine.

[4]  Anita B. Roberts,et al.  Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response , 1999, Nature Cell Biology.

[5]  Gregory Y. Lauwers,et al.  Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis , 2003, Nature.

[6]  I Tomlinson,et al.  Allelic imbalance at the LKB1 (STK11) locus in tumours from patients with Peutz‐Jeghers' syndrome provides evidence for a hamartoma–(adenoma)–carcinoma sequence , 1999, The Journal of pathology.

[7]  K. Kinzler,et al.  Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[9]  Thierry Soussi,et al.  Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. , 2002, Gastroenterology.

[10]  X. F. Wang,et al.  Targeted Disruption of Smad3 Reveals an Essential Role in Transforming Growth Factor β-Mediated Signal Transduction , 1999, Molecular and Cellular Biology.

[11]  D J Schaid,et al.  Increased Risk for Cancer in Patients with the Peutz-Jeghers Syndrome , 1998, Annals of Internal Medicine.

[12]  D. Melton,et al.  Hedgehog signals regulate multiple aspects of gastrointestinal development. , 2000, Development.

[13]  Tony Pawson,et al.  β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB , 2002, Cell.

[14]  M. Koike,et al.  Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer , 1997, Nature Genetics.

[15]  J. Graff,et al.  Smad3 Mutant Mice Develop Metastatic Colorectal Cancer , 1998, Cell.

[16]  J C Reed,et al.  Somatic Frameshift Mutations in the BAX Gene in Colon Cancers of the Microsatellite Mutator Phenotype , 1997, Science.

[17]  Richard Benton,et al.  The Drosophila Homolog of C. elegans PAR-1 Organizes the Oocyte Cytoskeleton and Directs oskar mRNA Localization to the Posterior Pole , 2000, Cell.

[18]  B. Ponder,et al.  Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. , 1988, Development.

[19]  M. Tsai,et al.  Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. , 1997, Genes & development.

[20]  Paul Polakis,et al.  Stabilization of β-Catenin by Genetic Defects in Melanoma Cell Lines , 1997, Science.

[21]  H. Clevers,et al.  Mutations in the APC tumour suppressor gene cause chromosomal instability , 2001, Nature Cell Biology.

[22]  D. Podolsky,et al.  Effects of growth factors on an intestinal epithelial cell line: transforming growth factor beta inhibits proliferation and stimulates differentiation. , 1987, Biochemical and biophysical research communications.

[23]  P S Gartside,et al.  Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. , 1999, Cancer research.

[24]  K. Do,et al.  Morphology of sporadic colorectal cancer with DNA replication errors , 1998, Gut.

[25]  William J. Ray,et al.  A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain , 1999, Nature.

[26]  Paul Polakis,et al.  Binding of GSK3β to the APC-β-Catenin Complex and Regulation of Complex Assembly , 1996, Science.

[27]  Y. Nakamura,et al.  Genetic alterations during colorectal-tumor development. , 1988, The New England journal of medicine.

[28]  K. Kinzler,et al.  Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. , 1999, Cancer research.

[29]  F. McCormick,et al.  A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. , 1987, Science.

[30]  Robin J. Leach,et al.  Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer , 1993, Cell.

[31]  C. Hui,et al.  New mouse models of congenital anorectal malformations. , 2000, Journal of pediatric surgery.

[32]  Isabelle Duluc,et al.  Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium , 2002, The EMBO journal.

[33]  Hiroyuki Miyoshi,et al.  Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes , 1998, Cell.

[34]  Daniel St Johnston,et al.  A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity , 2003, Nature.

[35]  K. Kinzler,et al.  APC mutations in colorectal tumors with mismatch repair deficiency. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jérôme Boudeau,et al.  Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade , 2003, Journal of biology.

[37]  Marina Pasca di Magliano,et al.  Hedgehog signalling in cancer formation and maintenance , 2003, Nature Reviews Cancer.

[38]  S. Miller,et al.  Enteric defensins: antibiotic peptide components of intestinal host defense , 1992, The Journal of cell biology.

[39]  Y. Takagi,et al.  Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. , 1996, Gastroenterology.

[40]  K. Krieglstein,et al.  Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. , 2000, European journal of biochemistry.

[41]  Hans Clevers,et al.  Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. , 2003, Genes & development.

[42]  M Oshima,et al.  Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Der,et al.  Understanding Ras: 'it ain't over 'til it's over'. , 2000, Trends in cell biology.

[44]  A. McMahon,et al.  Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. , 1999, Genes & development.

[45]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[46]  P. Polakis,et al.  Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[48]  David Carling,et al.  Supplemental Data LKB 1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade , 2003 .

[49]  D. Morton,et al.  The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. , 2000, Development.

[50]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[51]  J. Gordon,et al.  Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. , 1996, Genes & development.

[52]  S. Altschul,et al.  Identification of FAP locus genes from chromosome 5q21. , 1991, Science.

[53]  J M Lalouel,et al.  Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. , 1990, The New England journal of medicine.

[54]  William E. Grizzle,et al.  Detection of high incidence of K-ras oncogenes during human colon tumorigenesis , 1987, Nature.

[55]  Jeffrey I. Gordon,et al.  Bi-transgenic Mice Reveal that K-rasVal12 Augments a p53-independent Apoptosis When Small Intestinal Villus Enterocytes Reenter the Cell Cycle , 1997, The Journal of cell biology.

[56]  H. Clevers,et al.  Linking Colorectal Cancer to Wnt Signaling , 2000, Cell.

[57]  J. Heath,et al.  EPITHELIAL CELL MIGRATION IN THE INTESTINE , 1996, Cell biology international.

[58]  H Cheng,et al.  Clonal analysis of mouse intestinal epithelial progenitors. , 1999, Gastroenterology.

[59]  S H Kim,et al.  Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia , 1993, The Journal of cell biology.

[60]  David J. Anderson,et al.  Notch signalling controls pancreatic cell differentiation , 1999, Nature.

[61]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[62]  M. Lai,et al.  Aberrant crypt foci as microscopic precursors of colorectal cancer. , 2003, World journal of gastroenterology.

[63]  Hans C Clevers,et al.  Complete Polarization of Single Intestinal Epithelial Cells upon Activation of LKB1 by STRAD , 2004, Cell.

[64]  A. Rashid,et al.  Histopathological identification of colon cancer with microsatellite instability. , 2001, The American journal of pathology.

[65]  A B West,et al.  Localization of villin, a cytoskeletal protein specific to microvilli, in human ileum and colon and in colonic neoplasms. , 1988, Gastroenterology.

[66]  Janssen Kp Murine models of colorectal cancer: studying the role of oncogenic K-ras. , 2003 .

[67]  M. Baron,et al.  An overview of the Notch signalling pathway. , 2003, Seminars in cell & developmental biology.

[68]  K. Kinzler,et al.  Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status , 2002, Nature.

[69]  M. Loeffler,et al.  Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. , 1990, Development.

[70]  R. Paus,et al.  Sonic hedgehog signaling is essential for hair development , 1998, Current Biology.

[71]  Lesilee S. Rose,et al.  Early patterning of the C. elegans embryo. , 1998, Annual review of genetics.

[72]  Christopher S Potten,et al.  Intestinal stem cells protect their genome by selective segregation of template DNA strands. , 2002, Journal of cell science.

[73]  Jérôme Boudeau,et al.  LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR‐1 , 2004, The EMBO journal.

[74]  J. Gordon,et al.  Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[75]  N. Petrelli,et al.  Hamartomatous Polyposis Syndromes: Molecular Genetics, Neoplastic Risk, and Surveillance Recommendations , 2001, Annals of Surgical Oncology.

[76]  S N Thibodeau,et al.  Microsatellite instability in cancer of the proximal colon. , 1993, Science.

[77]  Andrew P. McMahon,et al.  Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity , 1993, Cell.

[78]  A. Gossler,et al.  Expression of Notch pathway components in fetal and adult mouse small intestine. , 2002, Gene expression patterns : GEP.

[79]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[80]  S. Artavanis-Tsakonas,et al.  Notch signaling: cell fate control and signal integration in development. , 1999, Science.

[81]  G. Thomas,et al.  Familial adenomatous polyposis: desmoid tumours and lack of ophthalmic lesions (CHRPE) associated with APC mutations beyond codon 1444. , 1995, Human molecular genetics.

[82]  Robert J. Gorlin,et al.  Nevoid Basal‐Cell Carcinoma Syndrome , 1987, Medicine.

[83]  J. Coxhead,et al.  Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  F. Real,et al.  Detection of the MUC2 apomucin tandem repeat with a mouse monoclonal antibody. , 1993, Gastroenterology.

[85]  Irene L Andrulis,et al.  MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma , 1996, Cell.

[86]  M. Barbacid,et al.  RAS oncogenes: the first 30 years , 2003, Nature Reviews Cancer.

[87]  N. Tamaoki,et al.  The rasH2 Transgenic Mouse: Nature of the Model and Mechanistic Studies on Tumorigenesis , 2001, Toxicologic pathology.

[88]  D. Winton,et al.  Stem-cell organization in mouse small intestine , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  C. Hui,et al.  Anorectal malformations caused by defects in sonic hedgehog signaling. , 2001, The American journal of pathology.

[90]  A. Goate,et al.  A common enzyme connects notch signaling and Alzheimer's disease. , 2000, Genes & development.

[91]  Jay S. Fine,et al.  Chronic Treatment with the γ-Secretase Inhibitor LY-411,575 Inhibits β-Amyloid Peptide Production and Alters Lymphopoiesis and Intestinal Cell Differentiation* , 2004, Journal of Biological Chemistry.

[92]  H. Pitot,et al.  A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. , 1990, Science.

[93]  H. Zoghbi,et al.  Requirement of Math1 for Secretory Cell Lineage Commitment in the Mouse Intestine , 2001, Science.

[94]  H C Clevers,et al.  Activation of the tumour suppressor kinase LKB1 by the STE20‐like pseudokinase STRAD , 2003, The EMBO journal.

[95]  B. Iacopetta TP53 mutation in colorectal cancer , 2003, Human mutation.

[96]  K. Kinzler,et al.  Erratum: Multiple Intestinal Neoplasia Caused By a Mutation in the Murine Homolog of the APC Gene , 1992, Science.

[97]  Victor E. Velculescu,et al.  Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis , 2001, Nature Genetics.

[98]  Ronald A. DePinho,et al.  Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation , 2002, Nature.

[99]  A. Rashid,et al.  Phenotypic and molecular characteristics of hyperplastic polyposis. , 2000, Gastroenterology.

[100]  Hans Clevers,et al.  Caught up in a Wnt storm: Wnt signaling in cancer. , 2003, Biochimica et biophysica acta.

[101]  Jason C Mills,et al.  Molecular features of adult mouse small intestinal epithelial progenitors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Margaret Robertson,et al.  Identification and characterization of the familial adenomatous polyposis coli gene , 1991, Cell.

[103]  Norbert Perrimon,et al.  Hedgehog signal transduction: recent findings. , 2002, Current opinion in genetics & development.

[104]  K. Jishage,et al.  Role of Lkb1, the causative gene of Peutz–Jegher's syndrome, in embryogenesis and polyposis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R Fodde,et al.  A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Darryl Shibata,et al.  Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis , 1997, Nature Genetics.

[107]  Lin Chen,et al.  Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice , 2000, Oncogene.

[108]  Gerard Brady,et al.  Crowd control in the crypt , 2002, Nature Medicine.

[109]  C. Potten,et al.  Gut instincts: thoughts on intestinal epithelial stem cells. , 2000, The Journal of clinical investigation.

[110]  Yutaka Shimada,et al.  Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours , 2003, Nature.

[111]  L. Kasturi,et al.  Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[112]  R. Nusse,et al.  Wnt signaling: a common theme in animal development. , 1997, Genes & development.

[113]  A. Moser,et al.  Homozygosity for the Minallele of Apc results in disruption of mouse development prior to gastrulation , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[114]  Hans Clevers,et al.  The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells , 2002, Cell.

[115]  Michael Dean,et al.  Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome , 1996, Cell.

[116]  Pavel Tomancak,et al.  A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation , 2000, Nature Cell Biology.

[117]  R. Myers,et al.  Human Homolog of patched, a Candidate Gene for the Basal Cell Nevus Syndrome , 1996, Science.

[118]  W. Bodmer,et al.  Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. , 2003, Cancer research.

[119]  S. Pawlowski,et al.  Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. , 2002, Cancer research.

[120]  M. Nucci,et al.  Phenotypic and genotypic characteristics of aberrant crypt foci in human colorectal mucosa. , 1997, Human pathology.

[121]  Naoki Wakabayashi,et al.  Expression of Musashi-1 in Human Normal Colon Crypt Cells: A Possible Stem Cell Marker of Human Colon Epithelium , 2003, Digestive Diseases and Sciences.

[122]  J. Keller,et al.  Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. , 2003, Gastroenterology.

[123]  Rodney J. Scott,et al.  Germline mutations in the 3′ part of APC exon 15 do not result in truncated proteins and are associated with attenuated adenomatous polyposis coli , 1996, Human Genetics.

[124]  W F Bodmer,et al.  Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. , 2001, American journal of human genetics.

[125]  Hiroyuki Miyoshi,et al.  Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. , 2002, Cancer research.

[126]  J. Barnard,et al.  CANCER BIOLOGY: Type II TGFβ receptor expression in intestinal cell lines and in the intestinal tract , 1996 .

[127]  Makoto M Taketo,et al.  No effects of Smad2 (madh2) null mutation on malignant progression of intestinal polyps in Apc(delta716) knockout mice. , 2002, Cancer research.

[128]  J. Nezu,et al.  Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase , 1998, Nature Genetics.

[129]  S. Goodman,et al.  Very high risk of cancer in familial Peutz-Jeghers syndrome. , 2000, Gastroenterology.

[130]  Hans Clevers,et al.  De Novo Crypt Formation and Juvenile Polyposis on BMP Inhibition in Mouse Intestine , 2004, Science.

[131]  D. Huylebroeck,et al.  New intracellular components of bone morphogenetic protein/Smad signaling cascades , 2003, FEBS letters.

[132]  D. Ward,et al.  Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer , 1994, Nature.

[133]  G. Thomas,et al.  Alleles of the APC gene: An attenuated form of familial polyposis , 1993, Cell.

[134]  P. Ingham,et al.  Hedgehog signaling in animal development: paradigms and principles. , 2001, Genes & development.

[135]  Christopher S Potten,et al.  The intestinal epithelial stem cell. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[136]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[137]  R. Fleischmann,et al.  Mutation of a mutL homolog in hereditary colon cancer. , 1994, Science.

[138]  K. M. Mulder,et al.  Differential sensitivity of subclasses of human colon carcinoma cell lines to the growth inhibitory effects of transforming growth factor-beta 1. , 1989, Experimental cell research.

[139]  David I. Smith,et al.  Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling , 2000, Nature Genetics.

[140]  A. Chapelle,et al.  Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability , 1995, Nature Genetics.

[141]  M Höcker,et al.  Molecular Mechanisms of Enteroendocrine Differentiaton , 1998, Annals of the New York Academy of Sciences.

[142]  M. Taketo,et al.  Intestinal polyposis in mice with a dominant stable mutation of the β‐catenin gene , 1999, The EMBO journal.

[143]  R. Fleischmann,et al.  Mutations of two P/WS homologues in hereditary nonpolyposis colon cancer , 1994, Nature.

[144]  Hideyuki Okano,et al.  Identification of a putative intestinal stem cell and early lineage marker; musashi-1. , 2003, Differentiation; research in biological diversity.

[145]  C Lengauer,et al.  Genetic instability and darwinian selection in tumours. , 1999, Trends in cell biology.

[146]  C. Potten,et al.  Stem cells in gastrointestinal epithelium: numbers, characteristics and death. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[147]  C. Potten,et al.  Stem cells: the intestinal stem cell as a paradigm. , 2000, Carcinogenesis.

[148]  Martin A. Nowak,et al.  The significance of unstable chromosomes in colorectal cancer , 2003, Nature Reviews Cancer.

[149]  T. Kameda,et al.  The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. , 2000, Development.

[150]  이석호,et al.  Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study , 2001, British Journal of Cancer.

[151]  Hans Clevers,et al.  Live and let die in the intestinal epithelium. , 2003, Current opinion in cell biology.

[152]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[153]  Hans Clevers,et al.  LKB1 tumor suppressor protein: PARtaker in cell polarity. , 2004, Trends in cell biology.

[154]  J. Hancock,et al.  Ras proteins: different signals from different locations , 2003, Nature Reviews Molecular Cell Biology.

[155]  C. Deng,et al.  Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. , 2000, Cytokine & growth factor reviews.

[156]  A. McMahon,et al.  Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. , 1995, Developmental biology.

[157]  H T Lynch,et al.  Hereditary colorectal cancer. , 1991, Seminars in oncology.

[158]  Yusuke Nakamura,et al.  Mutations of the APC adenomatous polyposis coli) gene , 1993, Human mutation.

[159]  Ryoichiro Kageyama,et al.  Control of endodermal endocrine development by Hes-1 , 2000, Nature Genetics.

[160]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[161]  C. Wetmore,et al.  Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. , 2003, Current opinion in genetics & development.

[162]  T. Ganz,et al.  The multifaceted Paneth cell , 2002, Cellular and Molecular Life Sciences CMLS.

[163]  B. Reid,et al.  Hereditary Gastrointestinal Polyposis Syndromes , 1986, The American journal of surgical pathology.

[164]  S. H. Rider,et al.  Chromosome 5 allele loss in human colorectal carcinomas , 1987, Nature.

[165]  William Gaffield,et al.  Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation , 2004, Nature Genetics.

[166]  M Oshima,et al.  Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. , 1999, Cancer research.

[167]  R. Coffey,et al.  Regulation of intestinal epithelial cell growth by transforming growth factor type beta. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[168]  L. Meisner,et al.  A juvenile polyposis tumor suppressor locus at 10q22 is deleted from nonepithelial cells in the lamina propria. , 1997, Gastroenterology.

[169]  K. Alitalo,et al.  Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient Mice , 2001, Science.

[170]  Hans Clevers,et al.  MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm , 2003 .

[171]  F. Real,et al.  Intestinal brush‐border‐associated enzymes: Co‐ordinated expression in colorectal cancer , 1992, International journal of cancer.

[172]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[173]  Ahmedin Jemal,et al.  Cancer Statistics, 2002 , 2002, CA: a cancer journal for clinicians.

[174]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[175]  H Cheng,et al.  The crypt cycle. Crypt and villus production in the adult intestinal epithelium. , 1987, Biophysical journal.

[176]  Raphael Kopan,et al.  Notch signaling: from the outside in. , 2000, Developmental biology.

[177]  S Ichii,et al.  Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. , 1992, Human molecular genetics.

[178]  Bernhard Küster,et al.  Comprehensive Proteomic Analysis of Human Par Protein Complexes Reveals an Interconnected Protein Network* , 2004, Journal of Biological Chemistry.

[179]  E. Calvo,et al.  Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[180]  K. Kinzler,et al.  Top-down morphogenesis of colorectal tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[181]  T. Jacks,et al.  Somatic activation of the K-ras oncogene causes early onset lung cancer in mice , 2001, Nature.

[182]  Paul Polakis,et al.  The oncogenic activation of β-catenin , 1999 .

[183]  A Luz,et al.  Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. , 1998, Gastroenterology.

[184]  H. Clevers,et al.  APC, Signal transduction and genetic instability in colorectal cancer , 2001, Nature Reviews Cancer.