Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods
暂无分享,去创建一个
[1] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[2] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[3] G. Dahlquist. On One-Leg Multistep Methods , 1983 .
[4] M. Crouzeix,et al. On the equivalence of A-stability and G-stability , 1989 .
[5] G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial value problems , 1976 .
[6] Germund Dahlquist,et al. G-stability is equivalent toA-stability , 1978 .
[7] J. Sanz-Serna,et al. Studies in numerical nonlinear instability III: Augmented Hamiltonian systems , 1987 .
[8] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[9] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[10] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[11] J. G. Verwer,et al. Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .
[12] J. M. Sanz-Serna,et al. A Hamiltonian explicit algorithm with spectral accuracy for the `good' Boussinesq system , 1990 .
[13] W. Watson. Numerical analysis , 1969 .
[14] David B. Gustavson. FASTBUS Software Progress , 1985, IEEE Transactions on Nuclear Science.
[15] J. M. Sanz-Serna,et al. Order conditions for canonical Runge-Kutta schemes , 1991 .
[16] K. Feng. Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .