FRANz: Fast Reconstruction of Wild Pedigrees

We present a software package for fast pedigree reconstruction in natural populations using co-dominant genomic markers such as microsatellites and SNPs. If available, the algorithm makes use of prior information such as known relationships (sub-pedigrees) or the age and sex of individuals. Statistical confidence is estimated by a simulation of the sampling process. The parentage inference is robust even in the presence of genotyping errors.

[1]  M. Steel,et al.  Reconstructing pedigrees: a combinatorial perspective. , 2006, Journal of theoretical biology.

[2]  A. Jones,et al.  Methods of parentage analysis in natural populations , 2003, Molecular ecology.

[3]  P. Taberlet,et al.  How to track and assess genotyping errors in population genetics studies , 2004, Molecular ecology.

[4]  J. Weber,et al.  Estimation of pairwise relationships in the presence of genotyping errors. , 1998, American journal of human genetics.

[5]  Eric P. Xing,et al.  Interpreting anonymous DNA samples from mass disasters - probabilistic forensic inference using genetic markers , 2006, ISMB.

[6]  Aaron P. Wagner,et al.  Estimating relatedness and relationships using microsatellite loci with null alleles , 2006, Heredity.

[7]  A. Kremer,et al.  Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis , 2000, Molecular ecology.

[8]  D. Jerry,et al.  Development of a microsatellite DNA parentage marker suite for black tiger shrimp Penaeus monodon , 2006 .

[9]  M. S. Grando,et al.  Genealogy of wine grape cultivars: ‘Pinot’ is related to ‘Syrah’ , 2006, Heredity.

[10]  M. Boehnke,et al.  Accurate inference of relationships in sib-pair linkage studies. , 1997, American journal of human genetics.

[11]  J. Pemberton,et al.  Wild pedigrees: the way forward , 2008, Proceedings of the Royal Society B: Biological Sciences.

[12]  J. Hadfield,et al.  Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework , 2006, Molecular ecology.

[13]  Elizabeth A. Thompson,et al.  Inference of genealogical structure , 1976 .

[14]  E A Thompson,et al.  Parental and sib likelihoods in genealogy reconstruction. , 1987, Biometrics.

[15]  Elizabeth A. Thompson,et al.  The relationship between single parent and parent pair genetic likelihoods in genealogy reconstruction , 1986 .

[16]  G. D,et al.  American Naturalist , 1867, Nature.

[17]  Anthony Almudevar,et al.  A simulated annealing algorithm for maximum likelihood pedigree reconstruction. , 2003, Theoretical population biology.

[18]  Jinliang Wang,et al.  Sibship reconstruction from genetic data with typing errors. , 2004, Genetics.

[19]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[20]  K. Roeder,et al.  Fractional paternity assignment: theoretical development and comparison to other methods , 1988, Theoretical and Applied Genetics.

[21]  S. Kalinowski,et al.  Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment , 2007, Molecular ecology.

[22]  R. Nielsen,et al.  Statistical approaches to paternity analysis in natural populations and applications to the North Atlantic humpback whale. , 2001, Genetics.

[23]  W. Art Chaovalitwongse,et al.  Reconstructing sibling relationships in wild populations , 2007, ISMB/ECCB.

[24]  W. G. Hill,et al.  Estimating quantitative genetic parameters using sibships reconstructed from marker data. , 2000, Genetics.

[25]  W. G. Hill,et al.  Sibship reconstruction in hierarchical population structures using Markov chain Monte Carlo techniques. , 2002, Genetical research.

[26]  Michael S. Blouin,et al.  DNA-based methods for pedigree reconstruction and kinship analysis in natural populations , 2003 .

[27]  T. Meagher Analysis of Paternity within a Natural Population of Chamaelirium luteum. II. Patterns of Male Reproductive Success , 1991, The American Naturalist.

[28]  T. C. Marshall,et al.  Statistical confidence for likelihood‐based paternity inference in natural populations , 1998, Molecular ecology.

[29]  Mike Steel,et al.  Reconstructing pedigrees: a stochastic perspective. , 2007, Journal of theoretical biology.

[30]  Li Jin,et al.  Microsatellite evolution in modern humans: a comparison of two data sets from the same populations , 2000 .