A Lagrangian staggered grid Godunov-like approach for hydrodynamics

Much research in Lagrangian staggered-grid hydrodynamics (SGH) has focused on explicit viscosity models for adding dissipation to a calculation that has shocks. The explicit viscosity is commonly called ''artificial viscosity''. Recently, researchers have developed hydrodynamic algorithms that incorporate approximate Riemann solutions on the dual grid [28,29,35,30,2,3]. This approach adds dissipation to the calculation via solving a Riemann-like problem. In this work, we follow the works of [28,29,35,30] and solve a multidirectional Riemann-like problem at the cell center. The Riemann-like solution at the cell center is used in the momentum and energy equations. The multidirectional Riemann-like problem used in this work differs from previous work in that it is an extension of the cell-centered hydrodynamics (CCH) nodal solution approach in [7]. Incorporating the multidirectional Riemann-like problem from [7] into SGH has merits such as the ability to resist mesh instabilities like hourglass null modes and chevron null modes. The approach is valid for complex multidimensional flows with strong shocks. Numerical details and test problems are presented.

[1]  Nathaniel R. Morgan,et al.  A dissipation model for staggered grid Lagrangian hydrodynamics , 2013 .

[2]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[4]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[5]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[6]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[7]  R. Kidder,et al.  Laser compression of matter: optical power and energy requirements , 1974 .

[8]  Philip L. Roe,et al.  A cell centred Lagrangian Godunov scheme for shock hydrodynamics , 2011 .

[9]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[10]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[11]  A. J. Barlow,et al.  A high order cell centred dual grid Lagrangian Godunov scheme , 2013 .

[12]  Raphaël Loubère,et al.  A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver , 2010, ICCS.

[13]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[14]  A. Burbeau-Augoula,et al.  A Node-Centered Artificial Viscosity Method for Two-Dimensional Lagrangian Hydrodynamics Calculations on a Staggered Grid , 2010 .

[15]  Raphaël Loubère Contribution to Lagrangian and Arbitrary-Lagrangian-Eulerian numerical schemes. (Contribution au domaine des méthodes numériques Lagrangiennes et Arbitrary-Lagrangian-Eulerian) , 2013 .

[16]  Donald E. Burton,et al.  Compatible, energy and symmetry preserving 2D lagrangian hydrodynamics in rz - cylindrical coordinates , 2010, ICCS.

[17]  R. Kidder,et al.  Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .

[18]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[19]  Donald E. Burton,et al.  Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .

[20]  Nathaniel R. Morgan,et al.  An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..

[21]  M. Shashkov,et al.  Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .

[22]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[23]  Ray E. Kidder Theory of homogeneous isentropic compression and its application to laser fusion , 1974 .

[24]  David C. Look,et al.  Defect Models in Electron-Irradiated N-Type GaAs , 1992 .

[25]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[26]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[27]  L. G. Margolin,et al.  A method for treating hourglass patterns , 1987 .

[28]  R. Landshoff,et al.  A Numerical Method for Treating Fluid Flow in the Presence of Shocks , 1955 .

[29]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[30]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[31]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[32]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[33]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[34]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[35]  P. Váchal,et al.  Formulation of a Staggered Two-Dimensional Lagrangian Scheme by Means of Cell-Centered Approximate Riemann Solver , 2010 .

[36]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..

[37]  Mark L. Wilkins,et al.  Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .

[38]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[39]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[40]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[41]  N. Thadhani,et al.  Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states , 2006 .

[42]  William P. Walters,et al.  Explosive effects and applications , 1998 .