A novel memetic algorithm for constrained optimization

In this paper, we present a memetic algorithm with novel local optimizer hybridization strategy for constrained optimization. The developed MA consists of multiple cycles. In each cycle, an estimation of distribution algorithm (EDA) with an adaptive univariate probability model is applied to search for promising search regions. A classical local optimizer, called DONLP2, is applied to improve the best solution found by the EDA to a high quality solution. New cycles are employed when the computational budget has not been reached. The new cycles are expected to learn from the search history to make the further search efficient and to enable escape from local optima. The developed algorithm is experimentally compared with ε-DE, which was the winner of the 2006 IEEE Congress on Evolutionary Computation (CEC'06) competition on constrained optimization. The results favour our algorithm against the best-known algorithm in terms of the number of fitness evaluations used to reach the global optimum.

[1]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[2]  Peter Spellucci,et al.  An SQP method for general nonlinear programs using only equality constrained subproblems , 1998, Math. Program..

[3]  Franz Rothlauf,et al.  PolyEDA: Combining Estimation of Distribution Algorithms and Linear Inequality Constraints , 2004, GECCO.

[4]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[5]  Aravind Srinivasan,et al.  A Population-Based, Parent Centric Procedure for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[6]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[7]  Jouni Lampinen,et al.  Constrained Real-Parameter Optimization with Generalized Differential Evolution , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[8]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[9]  Kalyanmoy Deb,et al.  A Hybrid Evolutionary Multi-objective and SQP Based Procedure for Constrained Optimization , 2007, ISICA.

[10]  D. Goldberg,et al.  Evolutionary Algorithm Using Marginal Histogram Models in Continuous Domain , 2007 .

[11]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[12]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[13]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  T. Takahama,et al.  Constrained Optimization by α Constrained Genetic Algorithm (αGA) , 2003 .

[15]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  Erwie Zahara,et al.  Solving constrained optimization problems with hybrid particle swarm optimization , 2008 .

[17]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[18]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[19]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[20]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[21]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[22]  Erwie Zahara,et al.  Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems , 2009, Expert Syst. Appl..

[23]  Mehmet Fatih Tasgetiren,et al.  A Multi-Populated Differential Evolution Algorithm for Solving Constrained Optimization Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[25]  Abdelhay A. Sallam,et al.  Swarming of intelligent particles for solving the nonlinear constrained optimization problem , 2001 .

[26]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[27]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[28]  Yixin Chen,et al.  Hybrid constrained simulated annealing and genetic algorithms for nonlinear constrained optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[29]  Jongsoo Lee,et al.  Constrained genetic search via schema adaptation: An immune network solution , 1996 .

[30]  T. Van Le A fuzzy evolutionary approach to constrained optimisation problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[31]  Efrn Mezura-Montes,et al.  Constraint-Handling in Evolutionary Optimization , 2009 .

[32]  Tetsuyuki Takahama,et al.  Solving Difficult Constrained Optimization Problems by the ε Constrained Differential Evolution with Gradient-Based Mutation , 2009 .

[33]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[34]  Janez Brest,et al.  An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.

[35]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[36]  Hongwei Liu,et al.  Integration of Genetic Algorithm and Cultural Algorithms for Constrained Optimization , 2006, ICONIP.

[37]  Hyun Myung,et al.  Evolutionary programming techniques for constrained optimization problems , 1997, IEEE Trans. Evol. Comput..

[38]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[39]  Linet Özdamar,et al.  Investigating a hybrid simulated annealing and local search algorithm for constrained optimization , 2008, Eur. J. Oper. Res..

[40]  Carlos A. Coello Coello,et al.  Use of Multiobjective Optimization Concepts to Handle Constraints in Genetic Algorithms , 2005, Evolutionary Multiobjective Optimization.

[41]  Hyun Myung,et al.  Evolian: Evolutionary Optimization Based on Lagrangian with Constraint Scaling , 1997, Evolutionary Programming.

[42]  Qingfu Zhang,et al.  An evolutionary algorithm with guided mutation for the maximum clique problem , 2005, IEEE Transactions on Evolutionary Computation.

[43]  J. Ford,et al.  Hybrid estimation of distribution algorithm for global optimization , 2004 .

[44]  C. Coello,et al.  Cultured differential evolution for constrained optimization , 2006 .

[45]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[46]  A. Kai Qin,et al.  Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[47]  Robert G. Reynolds,et al.  A Testbed for Solving Optimization Problems Using Cultural Algorithms , 1996, Evolutionary Programming.

[48]  Dirk Thierens,et al.  Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA , 2000, PPSN.

[49]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[50]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[51]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..