Viterbi-based Pruning for Sparse Matrix with Fixed and High Index Compression Ratio

[1]  Max Welling,et al.  Variational Dropout and the Local Reparameterization Trick , 2015, NIPS 2015.

[2]  Arash Ardakani,et al.  Sparsely-Connected Neural Networks: Towards Efficient VLSI Implementation of Deep Neural Networks , 2016, ICLR.

[3]  Song Han,et al.  Learning both Weights and Connections for Efficient Neural Network , 2015, NIPS.

[4]  Yves Chauvin,et al.  A Back-Propagation Algorithm with Optimal Use of Hidden Units , 1988, NIPS.

[5]  Song Han,et al.  EIE: Efficient Inference Engine on Compressed Deep Neural Network , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[6]  Xinmiao Zhang VLSI Architectures for Modern Error-Correcting Codes , 2015 .

[7]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[8]  Max Welling,et al.  Bayesian Compression for Deep Learning , 2017, NIPS.

[9]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[10]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[11]  Joan Bruna,et al.  Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation , 2014, NIPS.

[12]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[13]  Gregory J. Wolff,et al.  Optimal Brain Surgeon and general network pruning , 1993, IEEE International Conference on Neural Networks.

[14]  H.-L. Lou,et al.  Implementing the Viterbi algorithm , 1995, IEEE Signal Process. Mag..

[15]  Yixin Chen,et al.  Compressing Neural Networks with the Hashing Trick , 2015, ICML.

[16]  Lorien Y. Pratt,et al.  Comparing Biases for Minimal Network Construction with Back-Propagation , 1988, NIPS.