High-throughput continuous rotation electron diffraction data acquisition via software automation

A semi-automated routine for continuous rotation electron diffraction has been developed, enabling high-throughput data collection. Serial electron crystallography combined with a deep convolutional network are used to screen for suitable crystals.

[1]  Mauro Gemmi,et al.  Fast electron diffraction tomography , 2015 .

[2]  J. P. Abrahams,et al.  Protein structure determination by electron diffraction using a single three-dimensional nanocrystal , 2017, Acta crystallographica. Section D, Structural biology.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  U. Kolb,et al.  Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials , 2013 .

[5]  Andrea Thorn,et al.  Enhanced rigid-bond restraints , 2012, Acta Crystallographica Section A: Foundations of Crystallography.

[6]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[7]  Tamir Gonen,et al.  High-resolution structure determination by continuous rotation data collection in MicroED , 2014, Nature Methods.

[8]  Sven Hovmöller,et al.  A practical method to detect and correct for lens distortion in the TEM. , 2006, Ultramicroscopy.

[9]  Erik Knudsen,et al.  FabIO: easy access to two-dimensional X-ray detector images in Python , 2013 .

[10]  F. L. Hirshfeld Can X‐ray data distinguish bonding effects from vibrational smearing? , 1976 .

[11]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[12]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[13]  Paul A. Midgley,et al.  Double conical beam-rocking system for measurement of integrated electron diffraction intensities , 1994 .

[14]  N S Pannu,et al.  Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector , 2016, Acta crystallographica. Section A, Foundations and advances.

[15]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[16]  Norbert Stock,et al.  Solvent-Dependent Formation of Three New Bi-Metal–Organic Frameworks Using a Tetracarboxylic Acid , 2018 .

[17]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[18]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[19]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Stef Smeets,et al.  Quantitative Phase Analysis for Carbide Characterization in Steel Using Automated Electron Diffraction , 2018, steel research international.

[21]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[22]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[23]  Lars Öhrström,et al.  Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. , 2017, Chemical communications.

[24]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[25]  U. Kolb,et al.  "Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. , 2009, Ultramicroscopy.

[26]  Sven Hovmöller,et al.  Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing , 2013, Journal of applied crystallography.

[27]  Sven Hovmöller,et al.  Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders , 2015, IUCrJ.

[28]  Wei Wan,et al.  Serial electron crystallography: merging diffraction data through rank aggregation , 2017 .

[29]  Bin Wang,et al.  A Porous Cobalt Tetraphosphonate Metal-Organic Framework: Accurate Structure and Guest Molecule Location Determined by Continuous-Rotation Electron Diffraction. , 2018, Chemistry.

[30]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[31]  W. M. Meier,et al.  The crystal structure of mordenite (ptilolite) , 1961 .

[32]  Koji Yonekura,et al.  Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges , 2015, Proceedings of the National Academy of Sciences.

[33]  Stef Smeets,et al.  Serial electron crystallography for structure determination and phase analysis of nanocrystalline materials , 2018, Journal of applied crystallography.

[34]  U. Kolb,et al.  Towards automated diffraction tomography: part I--data acquisition. , 2007, Ultramicroscopy.

[35]  Jan Pieter Abrahams,et al.  A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals , 2013, Acta crystallographica. Section D, Biological crystallography.

[36]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[37]  Tamir Gonen,et al.  MicroED data collection and processing , 2015, Acta crystallographica. Section A, Foundations and advances.

[38]  François Chollet,et al.  Keras: The Python Deep Learning library , 2018 .

[39]  Sven Hovmöller,et al.  A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals. , 2018, Structure.

[40]  Reiner Hegerl,et al.  Towards automatic electron tomography , 1992 .

[41]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.