Probabilistic Model Checking of the CSMA/CD Protocol Using PRISM and APMC

Carrier Sense Multiple Access/Collision Detection (CSMA/CD) is the protocol for carrier transmission access in Ethernet networks (international standard IEEE 802.3). On Ethernet, any Network Interface Card (NIC) can try to send a packet in a channel at any time. If another NIC tries to send a packet at the same time, a collision is said to occur and the packets are discarded. The CSMA/CD protocol was designed to avoid this problem, more precisely to allow a NIC to send its packet without collision. This is done by way of a randomized exponential backoff process. In this paper, we analyse the correctness of the CSMA/CD protocol, using techniques from probabilistic model checking and approximate probabilistic model checking. The tools that we use are PRISM and APMC. Moreover, we provide a quantitative analysis of some CSMA/CD properties.

[1]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[2]  Dirk Beyer,et al.  Improvements in BDD-Based Reachability Analysis of Timed Automata , 2001, FME.

[3]  Timothy A. Gonsalves,et al.  On the performance effects of station locations and access protocol parameters in Ethernet networks , 1988, IEEE Trans. Commun..

[4]  Marta Z. Kwiatkowska,et al.  PRISM: Probabilistic Symbolic Model Checker , 2002, Computer Performance Evaluation / TOOLS.

[5]  Marta Z. Kwiatkowska,et al.  Automatic verification of real-time systems with discrete probability distributions , 1999, Theor. Comput. Sci..

[6]  Jia Wang,et al.  Efficient and accurate Ethernet simulation , 1999, Proceedings 24th Conference on Local Computer Networks. LCN'99.

[7]  Leonard Kleinrock,et al.  Throughput Analysis for Persistent CSMA Systems , 1985, IEEE Trans. Commun..

[8]  Marta Z. Kwiatkowska,et al.  Performance analysis of probabilistic timed automata using digital clocks , 2003, Formal Methods Syst. Des..

[9]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[10]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[11]  Marta Z. Kwiatkowska,et al.  Probabilistic Model Checking of Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol , 2003, Formal Aspects of Computing.

[12]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[13]  Thomas Hérault,et al.  Approximate Probabilistic Model Checking , 2004, VMCAI.

[14]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[15]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[16]  Holger Hermanns,et al.  On the use of MTBDDs for performability analysis and verification of stochastic systems , 2003, J. Log. Algebraic Methods Program..

[17]  Cyrus Derman,et al.  Finite State Markovian Decision Processes , 1970 .

[18]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[19]  Thomas A. Henzinger,et al.  Reactive Modules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[20]  Zohar Manna,et al.  Formal verification of probabilistic systems , 1997 .

[21]  Peter Winkler,et al.  Exact Mixing in an Unknown Markov Chain , 1995, Electron. J. Comb..

[22]  Stavros Tripakis,et al.  The Tool KRONOS , 1996, Hybrid Systems.

[23]  Joost-Pieter Katoen,et al.  A Semi-Markov Model of a Home Network Access Protocol , 1993, MASCOTS.

[24]  Jeffrey C. Mogul,et al.  Measured capacity of an Ethernet: myths and reality , 1988, CCRV.

[25]  Marta Z. Kwiatkowska,et al.  Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol , 2002, PAPM-PROBMIV.