The Best Bounds in Gautschi-Kershaw Inequalities

By employing the convolution theorem of Laplace transforms, some asymptotic formulas and integral representations of the gamma, psi and polygamma functions, and other analytic techniques, this note provides an alternative proof of a monotonicity and convexity property by N. Elezovic, C. Giordano and J. Pecaric in [4] to establish the best bounds in Gautschi- Kershaw inequalities. Moreover, some (logarithmically) complete monotonicity results on functions related to Gautschi-Kershaw inequalities are remarked.

[1]  D. V. Widder,et al.  The Laplace Transform , 1943 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[4]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[5]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[6]  Feng Qi,et al.  The function $(b^x-a^x)/x$: Inequalities and properties , 1998 .

[7]  Feng Qi,et al.  Generalized weighted mean values with two parameters† , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Feng Qi (祁锋),et al.  Note on monotonicity of generalized weighted mean values , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Feng Qi,et al.  Generalized Abstracted Mean Values , 2000 .

[10]  Josip Pečarić,et al.  The best bounds in Gautschi's inequality , 2000 .

[11]  Feng Qi,et al.  The Extended Mean Values: Definition, Properties, Monotonicities, Comparison, Convexities, Generalizations, and Applications , 2001 .

[12]  Feng Qi (祁锋) SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES , 2001 .

[13]  INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION , 2001 .

[14]  Feng Qi,et al.  Monotonicity Results and Inequalities for the Gamma and Incomplete Gamma Functions , 2002 .

[15]  Feng Qi,et al.  Logarithmic convexity of extended mean values , 2001 .

[16]  Christian Berg,et al.  Integral Representation of Some Functions Related to the Gamma Function , 2004 .

[17]  Feng Qi,et al.  Complete Monotonicities of Functions Involving the Gamma and Digamma Functions , 2004 .

[18]  Feng Qi (祁锋),et al.  The best bounds in Wallis' inequality , 2004 .

[19]  Feng Qi,et al.  A complete monotonicity property of the gamma function , 2004 .

[20]  S. Dragomir,et al.  NOTES ON THE SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES , 2005 .

[21]  Feng Qi (祁锋) A Note on Schur-Convexity of Extended Mean Values , 2005 .

[22]  Chao-Ping Chen,et al.  Some completely monotonic functions involving the gamma and polygamma functions , 2006, Journal of the Australian Mathematical Society.