Proceedings of the 2nd International Workshop on the Implementation of Logics

This note reports on some experiments, using a handful of standard automated reasoning tools, for exploring Steinitz-Rademacher polyhedra, which are models of a certain first-order theory of incidence structures. This theory and its models, even simple ones, presents significant, geometrically fascinating challenges for automated reasoning tools are.

[1]  Christian G. Fermüller,et al.  Hypersequent Calculi for Gödel Logics - a Survey , 2003, J. Log. Comput..

[2]  Pierangelo Miglioli,et al.  Generalized Tableau Systems for Intemediate Propositional Logics , 1997, TABLEAUX.

[3]  R. Hindley The Principal Type-Scheme of an Object in Combinatory Logic , 1969 .

[4]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[5]  Jörg Hudelmaier,et al.  An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic , 1993, J. Log. Comput..

[6]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[7]  Andrei Voronkov,et al.  Vampire 1.1 (System Description) , 2001, IJCAR.

[8]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[9]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[10]  Nachum Dershowitz,et al.  In handbook of automated reasoning , 2001 .

[11]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[12]  Kenneth L. McMillan,et al.  Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.

[13]  Nissim Francez,et al.  Basic simple type theory , 1998 .

[14]  Ben Shneiderman,et al.  Designing The User Interface , 2013 .

[15]  Leonard Bolc,et al.  Intuitionistic Propositional Calculus , 1992 .

[16]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[17]  Fahiem Bacchus,et al.  Representing and reasoning with probabilistic knowledge , 1988 .

[18]  E. Steinitz,et al.  Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .

[19]  Mauro Ferrari,et al.  Duplication-Free Tableau Calculi and Related Cut-Free Sequent Calculi for the Interpolable Propositional Intermediate Logics , 1999, Log. J. IGPL.

[20]  Andrei Voronkov,et al.  Limited resource strategy in resolution theorem proving , 2003, J. Symb. Comput..

[21]  Lawrence C. Paulson,et al.  Tool support for logics of programs , 1997 .

[22]  Reiner Hähnle,et al.  Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.

[23]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[24]  Fabio Massacci Simplification: A General Constraint Propagation Technique for Propositional and Modal Tableaux , 1998, TABLEAUX.

[25]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[26]  C. Muñoz Type Theory and Its Applications to Computer Science ∗ , 2022 .

[27]  Arnon Avron,et al.  Decomposition Proof Systems for Gödel-Dummett Logics , 2001, Stud Logica.

[28]  Markus Wenzel,et al.  Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.

[29]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[30]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[31]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[32]  Fabio Gagliardi Cozman,et al.  A Toolset for Propositional Probabilistic Logic , 2022 .

[33]  Geoff Sutcliffe System description : SystemOnTPTP , 2000 .

[34]  Dieter Hofbauer,et al.  Termination Proofs and the Length of Derivations (Preliminary Version) , 1989, RTA.

[35]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.