Complete Genome Sequence of the Anaerobic , Protein-Degrading Hyperthermophilic

Complete Genome Sequence of the Anaerobic, Protein-Degrading Hyperthermophilic Crenarchaeon Desulfurococcus kamchatkensis † Nikolai V. Ravin,‡ Andrey V. Mardanov,‡ Alexey V. Beletsky, Ilya V. Kublanov, Tatiana V. Kolganova, Alexander V. Lebedinsky, Nikolai A. Chernyh, Elizaveta A. Bonch-Osmolovskaya, and Konstantin G. Skryabin* Centre “Bioengineering,” Russian Academy of Sciences, Moscow 117312, Russia, and Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia

[1]  A. Mardanov,et al.  Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. , 2009, International journal of systematic and evolutionary microbiology.

[2]  J. Chun,et al.  The Complete Genome Sequence of Thermococcus onnurineus NA1 Reveals a Mixed Heterotrophic and Carboxydotrophic Metabolism , 2008, Journal of bacteriology.

[3]  G. Rákhely,et al.  A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis. , 2008, FEMS microbiology letters.

[4]  Michael Y. Galperin,et al.  Evolutionary primacy of sodium bioenergetics , 2008, Biology Direct.

[5]  Luke E. Ulrich,et al.  Genome Sequence of Thermofilum pendens Reveals an Exceptional Loss of Biosynthetic Pathways without Genome Reduction , 2008, Journal of bacteriology.

[6]  P. Londei Translational Mechanisms and Protein Synthesis , 2007 .

[7]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[8]  Finn Werner,et al.  Structure and function of archaeal RNA polymerases , 2007, Molecular microbiology.

[9]  P. Schönheit,et al.  Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix. , 2007, FEMS microbiology letters.

[10]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[11]  Michael W. W. Adams,et al.  Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.

[12]  S. Bell,et al.  Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes , 2007, Proceedings of the National Academy of Sciences.

[13]  Harald Huber,et al.  Ignicoccus hospitalis sp. nov., the host of 'Nanoarchaeum equitans'. , 2007, International journal of systematic and evolutionary microbiology.

[14]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[15]  H. Atomi,et al.  Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism , 2007, Science.

[16]  Kim Brügger,et al.  The Sulfolobus database , 2006, Nucleic Acids Res..

[17]  R. Garrett,et al.  A putative viral defence mechanism in archaeal cells. , 2006, Archaea.

[18]  B. Siebers,et al.  Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. , 2005, Current opinion in microbiology.

[19]  R. Garrett,et al.  The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota , 2005, Journal of bacteriology.

[20]  Gertraud Burger,et al.  AutoFACT: An Automatic Functional Annotation and Classification Tool , 2005, BMC Bioinformatics.

[21]  Ren Zhang,et al.  Identification of replication origins in archaeal genomes based on the Z-curve method. , 2005, Archaea.

[22]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[23]  F. Tabita,et al.  Modified Pathway To Synthesize Ribulose 1,5-Bisphosphate in Methanogenic Archaea , 2004, Journal of bacteriology.

[24]  Rolf Bernander,et al.  Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Rolf Bernander,et al.  Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus , 2004, Cell.

[26]  F. Lottspeich,et al.  Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. , 2003, Microbiology.

[27]  M. Rossi,et al.  Identification of an archaeal alpha-L-fucosidase encoded by an interrupted gene. Production of a functional enzyme by mutations mimicking programmed -1 frameshifting. , 2003, The Journal of biological chemistry.

[28]  K. Stetter,et al.  Autotrophic CO2 fixation pathways in archaea (Crenarchaeota) , 2003, Archives of Microbiology.

[29]  Patrick Forterre,et al.  A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. , 2002, Trends in genetics : TIG.

[30]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[31]  Akihiko Yamagishi,et al.  Introns in protein‐coding genes in Archaea , 2002, FEBS letters.

[32]  Jizhong Zhou,et al.  DNA Microarray Analysis of the Hyperthermophilic Archaeon Pyrococcus furiosus: Evidence for a New Type of Sulfur-Reducing Enzyme Complex , 2001, Journal of bacteriology.

[33]  P. Forterre,et al.  In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[35]  M. Keller,et al.  Anaerobic respiration with elemental sulfur and with disulfides , 1998 .

[36]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[37]  D. Söll,et al.  Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Adams,et al.  Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[40]  J. Leunissen,et al.  Subtilases: The superfamily of subtilisin‐like serine proteases , 1997, Protein science : a publication of the Protein Society.

[41]  M. Adams,et al.  Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus , 1996, Journal of bacteriology.

[42]  Yves Van de Peer,et al.  TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment , 1994, Comput. Appl. Biosci..

[43]  S. Okada,et al.  Classification of Some α-Glucosidases and α-Xylosidases on the Basis of Substrate Specificity , 1994 .

[44]  Jeffrey H. Miller,et al.  The sequence of a subtilisin‐type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability , 1994, Protein science : a publication of the Protein Society.

[45]  K. Noll,et al.  Characterization and Regulation of Sulfur Reductase Activity in Thermotoga neapolitana , 1994, Applied and environmental microbiology.

[46]  D. Cowan,et al.  An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 degrees C. , 1987, The Biochemical journal.

[47]  W. Zillig,et al.  Desulfurococcaceae, the Second Family of the Extremely Thermophilic, Anaerobic, Sulfur-Respiring Thermoproteales , 1982 .

[48]  R. Garrett,et al.  Sulfolobus genomes: mechanisms of rearrangement and change , 2006 .

[49]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[50]  R. Garrett,et al.  Mobile elements in archaeal genomes. , 2002, FEMS microbiology letters.

[51]  K. Shockley,et al.  Proteolysis in hyperthermophilic microorganisms. , 2002, Archaea.

[52]  Francine B. Perler,et al.  InBase: the Intein Database , 2002, Nucleic Acids Res..

[53]  M. Adams,et al.  Ferredoxin:NADP oxidoreductase from Pyrococcus furiosus. , 2001, Methods in enzymology.

[54]  O. Lichtarge,et al.  Bacterial Mode of Replication with Eukaryotic-Like Machinery in a Hyperthermophilic Archaeon , 2000 .