Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation

[1]  Jean Yee Hwa Yang,et al.  Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data , 2015, Bioinform..

[2]  D. James,et al.  Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway* , 2015, The Journal of Biological Chemistry.

[3]  Sean J Humphrey,et al.  High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics , 2015, Nature Biotechnology.

[4]  Ruth Nussinov,et al.  The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. , 2015, Structure.

[5]  David E James,et al.  A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. , 2015, Cell reports.

[6]  J. Chin,et al.  Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. , 2015, Nature chemical biology.

[7]  Henk W. P. van den Toorn,et al.  An Augmented Multiple-Protease-Based Human Phosphopeptide Atlas. , 2015, Cell reports.

[8]  Sean J. Humphrey,et al.  Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry , 2015, Science Signaling.

[9]  A. Lamond,et al.  Multidimensional proteomics for cell biology , 2015, Nature Reviews Molecular Cell Biology.

[10]  T. McGraw,et al.  Development of a new model system to dissect isoform specific Akt signalling in adipocytes , 2015, The Biochemical journal.

[11]  Verena Albert,et al.  mTOR signaling in cellular and organismal energetics. , 2015, Current opinion in cell biology.

[12]  Sebastian A. Wagner,et al.  Acetylation site specificities of lysine deacetylase inhibitors in human cells , 2015, Nature Biotechnology.

[13]  L. Kay,et al.  Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch , 2014, Nature.

[14]  B. Kuster,et al.  Optimized chemical proteomics assay for kinase inhibitor profiling. , 2015, Journal of proteome research.

[15]  Andreas Plückthun,et al.  Reproducibility: Standardize antibodies used in research , 2015, Nature.

[16]  Carlo Reggiani,et al.  Single muscle fiber proteomics reveals unexpected mitochondrial specialization , 2015, EMBO reports.

[17]  H. Daub Quantitative proteomics of kinase inhibitor targets and mechanisms. , 2015, ACS chemical biology.

[18]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[19]  B. Viollet,et al.  Prior AICAR Stimulation Increases Insulin Sensitivity in Mouse Skeletal Muscle in an AMPK-Dependent Manner , 2014, Diabetes.

[20]  M. Mann,et al.  Cell-type-resolved quantitative proteomics of murine liver. , 2014, Cell metabolism.

[21]  Jesper V Olsen,et al.  Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. , 2014, Journal of proteome research.

[22]  J. Olsen,et al.  Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. , 2014, Journal of proteome research.

[23]  Matthias Mann,et al.  The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer* , 2014, Molecular & Cellular Proteomics.

[24]  M. Mann,et al.  Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. , 2014, Cell reports.

[25]  K. Nakayama,et al.  Reconstruction of insulin signal flow from phosphoproteome and metabolome data. , 2014, Cell reports.

[26]  Chunaram Choudhary,et al.  The growing landscape of lysine acetylation links metabolism and cell signalling , 2014, Nature Reviews Molecular Cell Biology.

[27]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[28]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[29]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[30]  Derek J. Bailey,et al.  The One Hour Yeast Proteome* , 2013, Molecular & Cellular Proteomics.

[31]  Elizabeth Pennisi,et al.  The CRISPR craze. , 2013, Science.

[32]  Juan Astorga-Wells,et al.  Rapid and Deep Human Proteome Analysis by Single-dimension Shotgun Proteomics* , 2013, Molecular & Cellular Proteomics.

[33]  David E. James,et al.  Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2 , 2013, Cell metabolism.

[34]  M. Mann,et al.  A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics , 2013, Nature Biotechnology.

[35]  Matthias Mann,et al.  Direct Proteomic Quantification of the Secretome of Activated Immune Cells , 2013, Science.

[36]  U. Sauer,et al.  Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo Pyrimidine Synthesis , 2013, Science.

[37]  G. Lahav,et al.  Encoding and Decoding Cellular Information through Signaling Dynamics , 2013, Cell.

[38]  M. Mann,et al.  Initial Quantitative Proteomic Map of 28 Mouse Tissues Using the SILAC Mouse* , 2013, Molecular & Cellular Proteomics.

[39]  M. Mann,et al.  The coming age of complete, accurate, and ubiquitous proteomes. , 2013, Molecular cell.

[40]  Dmitrij Frishman,et al.  Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins , 2013, PLoS Comput. Biol..

[41]  D R Mani,et al.  Refined Preparation and Use of Anti-diglycine Remnant (K-ε-GG) Antibody Enables Routine Quantification of 10,000s of Ubiquitination Sites in Single Proteomics Experiments* , 2012, Molecular & Cellular Proteomics.

[42]  Angus I. Lamond,et al.  Global Subcellular Characterization of Protein Degradation Using Quantitative Proteomics , 2012, Molecular & Cellular Proteomics.

[43]  U. Sauer,et al.  Regulation of yeast central metabolism by enzyme phosphorylation , 2012, Molecular systems biology.

[44]  Derek J. Bailey,et al.  A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. , 2012, Cell metabolism.

[45]  B. Hemmings,et al.  PI3K-PKB/Akt pathway. , 2012, Cold Spring Harbor perspectives in biology.

[46]  Hongyang Wang,et al.  Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data* , 2012, Molecular & Cellular Proteomics.

[47]  Bernhard Kuster,et al.  Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present , 2012, Analytical and Bioanalytical Chemistry.

[48]  S. Mohammed,et al.  In-house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis. , 2012, The Analyst.

[49]  K. Lage,et al.  Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues , 2012, Nature Communications.

[50]  B. Brandhuber,et al.  An ATP-Site On-Off Switch That Restricts Phosphatase Accessibility of Akt , 2012, Science Signaling.

[51]  D. Hardie,et al.  AMPK: a nutrient and energy sensor that maintains energy homeostasis , 2012, Nature Reviews Molecular Cell Biology.

[52]  K. Wellen,et al.  A two-way street: reciprocal regulation of metabolism and signalling , 2012, Nature Reviews Molecular Cell Biology.

[53]  Naoyuki Sugiyama,et al.  Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. , 2012, Journal of chromatography. A.

[54]  Bernhard Küster,et al.  Software Tools for MS-Based Quantitative Proteomics: A Brief Overview , 2012, Quantitative Methods in Proteomics.

[55]  A. Panchenko,et al.  Phosphorylation in protein-protein binding: effect on stability and function. , 2011, Structure.

[56]  Roger S. Armen,et al.  Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity , 2011, Proceedings of the National Academy of Sciences.

[57]  Edward L. Huttlin,et al.  A large-scale method to measure absolute protein phosphorylation stoichiometries , 2011, Nature Methods.

[58]  S. Gygi,et al.  Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling , 2011, Science.

[59]  D. James,et al.  Mapping Insulin/GLUT4 Circuitry , 2011, Traffic.

[60]  M. Mann,et al.  Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation* , 2011, Molecular & Cellular Proteomics.

[61]  D. Sabatini,et al.  The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling , 2011, Science.

[62]  T. Köcher,et al.  Ultra-high-pressure RPLC hyphenated to an LTQ-Orbitrap Velos reveals a linear relation between peak capacity and number of identified peptides. , 2011, Analytical chemistry.

[63]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[64]  J. Chin,et al.  Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells , 2011, Journal of the American Chemical Society.

[65]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[66]  D. Vertommen,et al.  Heart 6-phosphofructo-2-kinase activation by insulin requires PKB (protein kinase B), but not SGK3 (serum- and glucocorticoid-induced protein kinase 3). , 2010, The Biochemical journal.

[67]  Ole Nørregaard Jensen,et al.  Phosphoproteome Analysis of Functional Mitochondria Isolated from Resting Human Muscle Reveals Extensive Phosphorylation of Inner Membrane Protein Complexes and Enzymes* , 2010, Molecular & Cellular Proteomics.

[68]  Pradeep Kota,et al.  Engineered allosteric activation of kinases in living cells , 2010, Nature Biotechnology.

[69]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[70]  J. Chin,et al.  Genetically encoded photocontrol of protein localization in mammalian cells. , 2010, Journal of the American Chemical Society.

[71]  J. Treebak,et al.  Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. , 2010, American journal of physiology. Cell physiology.

[72]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[73]  T. Pawson,et al.  Cell Signaling in Space and Time: Where Proteins Come Together and When They’re Apart , 2009, Science.

[74]  D. James,et al.  Cluster Analysis of Insulin Action in Adipocytes Reveals a Key Role for Akt at the Plasma Membrane* , 2009, The Journal of Biological Chemistry.

[75]  J. Cox,et al.  Proteomics strategy for quantitative protein interaction profiling in cell extracts , 2009, Nature Methods.

[76]  T. P. Neufeld,et al.  Regulation of TORC1 by Rag GTPases in nutrient response , 2008, Nature Cell Biology.

[77]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[78]  B. Manning,et al.  The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. , 2008, The Biochemical journal.

[79]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[80]  Bernhard Kuster,et al.  Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors , 2007, Nature Biotechnology.

[81]  J. Ferrell,et al.  Mechanisms of specificity in protein phosphorylation , 2007, Nature Reviews Molecular Cell Biology.

[82]  P. Bork,et al.  Systematic Discovery of In Vivo Phosphorylation Networks , 2007, Cell.

[83]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[84]  S. Carr,et al.  PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. , 2007, Molecular cell.

[85]  F. Thong,et al.  The Rab GTPase-Activating Protein AS160 Integrates Akt, Protein Kinase C, and AMP-Activated Protein Kinase Signals Regulating GLUT4 Traffic , 2007, Diabetes.

[86]  Ming You,et al.  TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth , 2006, Cell.

[87]  A. Pandey,et al.  Chemical Rescue of a Mutant Enzyme in Living Cells , 2006, Science.

[88]  David E James,et al.  Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking* , 2005, Journal of Biological Chemistry.

[89]  S. Gygi,et al.  An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets , 2005, Nature Biotechnology.

[90]  S. Kane,et al.  Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. , 2005, Cell metabolism.

[91]  Paul Tempst,et al.  Phosphorylation and Functional Inactivation of TSC2 by Erk Implications for Tuberous Sclerosisand Cancer Pathogenesis , 2005, Cell.

[92]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[93]  J. Auwerx,et al.  Corrigendum: Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity , 2004, Nature.

[94]  Steven P Gygi,et al.  Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Johan Auwerx,et al.  Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity , 2004, Nature.

[96]  Waltraud X. Schulze,et al.  A Novel Proteomic Screen for Peptide-Protein Interactions* , 2004, Journal of Biological Chemistry.

[97]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[98]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[99]  John M Asara,et al.  Insulin-stimulated Phosphorylation of a Rab GTPase-activating Protein Regulates GLUT4 Translocation* , 2003, The Journal of Biological Chemistry.

[100]  K. Inoki,et al.  TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling , 2002, Nature Cell Biology.

[101]  J. Blenis,et al.  Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. , 2002, Molecular cell.

[102]  S. Kane,et al.  A Method to Identify Serine Kinase Substrates , 2002, The Journal of Biological Chemistry.

[103]  P. Cohen,et al.  The origins of protein phosphorylation , 2002, Nature Cell Biology.

[104]  Laurence H. Pearl,et al.  Crystal Structure of Glycogen Synthase Kinase 3β Structural Basis for Phosphate-Primed Substrate Specificity and Autoinhibition , 2001, Cell.

[105]  M. Yaffe,et al.  A motif-based profile scanning approach for genome-wide prediction of signaling pathways , 2001, Nature Biotechnology.

[106]  P. Cohen,et al.  The regulation of protein function by multisite phosphorylation--a 25 year update. , 2000, Trends in biochemical sciences.

[107]  D. Carling,et al.  Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia , 2000, Current Biology.

[108]  Peter G. Schultz,et al.  A chemical switch for inhibitor-sensitive alleles of any protein kinase , 2000, Nature.

[109]  D. Alessi,et al.  Heart 6-Phosphofructo-2-kinase Activation by Insulin Results from Ser-466 and Ser-483 Phosphorylation and Requires 3-Phosphoinositide-dependent Kinase-1, but Not Protein Kinase B* , 1999, The Journal of Biological Chemistry.

[110]  W Ogawa,et al.  Insulin-Induced Phosphorylation and Activation of Cyclic Nucleotide Phosphodiesterase 3B by the Serine-Threonine Kinase Akt , 1999, Molecular and Cellular Biology.

[111]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[112]  L. Pinna,et al.  How do protein kinases recognize their substrates? , 1996, Biochimica et biophysica acta.

[113]  S. Schreiber,et al.  Control of p70 S6 kinase by kinase activity of FRAP in vivo , 1995, Nature.

[114]  T. Soderling,et al.  Amino acid sequence of the phosphorylation site of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. , 1984, The Journal of biological chemistry.

[115]  E. Krebs,et al.  Conversion of phosphorylase b to phosphorylase a in muscle extracts. , 1955, The Journal of biological chemistry.