On the extremal values of the eccentric distance sum of trees with a given domination number

Abstract Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as ξ d ( G ) = ∑ v ∈ V e G ( v ) D G ( v ) , where e G ( v ) is the eccentricity of the vertex v and D G ( v ) = ∑ u ∈ V d G ( u , v ) is the sum of all distances from the vertex v . In this paper, the extremal tree among n -vertex trees with domination number γ satisfying 4 ≤ γ ⌈ n 3 ⌉ having the maximal EDS is characterized. This proves Conjecture 4.2 posed in Miao et al. (2015).

[1]  Guihai Yu,et al.  On the eccentric distance sum of graphs , 2011 .

[2]  Lihua Feng,et al.  On the extremal values of the eccentric distance sum of trees , 2012 .

[3]  I. Gutman,et al.  Eccentric Connectivity Index of Chemical Trees , 2011, 1104.3206.

[4]  Kexiang Xu,et al.  Extremal energies of trees with a given domination number , 2011 .

[5]  O. Ore Theory of Graphs , 1962 .

[6]  Simon Mukwembi,et al.  A lower bound on the eccentric connectivity index of a graph , 2012, Discret. Appl. Math..

[7]  Kexiang Xu,et al.  A short and unified proof of Yu et al.ʼs two results on the eccentric distance sum , 2011 .

[8]  Kexiang Xu,et al.  Some extremal results on the connective eccentricity index of graphs , 2016 .

[9]  Shenggui Zhang,et al.  Further results on the eccentric distance sum , 2012, Discret. Appl. Math..

[10]  Ayse Dilek Maden,et al.  On a novel eccentricity-based invariant of a graph , 2016 .

[11]  Teresa W. Haynes,et al.  Extremal graphs for inequalities involving domination parameters , 2000, Discret. Math..

[12]  Lianying Miao,et al.  On the extremal values of the eccentric distance sum of trees with a given domination number , 2015, Discret. Appl. Math..

[13]  Guihai Yu,et al.  On the eccentric distance sum of trees and unicyclic graphs , 2011 .

[14]  Shuchao Li,et al.  Extremal values on the eccentric distance sum of trees , 2012, Discret. Appl. Math..

[15]  Michael S. Jacobson,et al.  On graphs having domination number half their order , 1985 .

[16]  Bo Zhou,et al.  On the maximal eccentric connectivity indices of graphs , 2012, Applied Mathematics-A Journal of Chinese Universities.

[17]  Sunil Gupta,et al.  Eccentric distance sum: A novel graph invariant for predicting biological and physical properties , 2002 .

[18]  Lang Tang,et al.  On the connective eccentricity index of trees and unicyclic graphs with given diameter , 2014 .