сWnt signaling modulation results in a change of the colony architecture in a hydrozoan.

[1]  R. P. Kostyuchenko,et al.  FoxA expression pattern in two polychaete species, Alitta virens and Platynereis dumerilii: Examination of the conserved key regulator of the gut development from cleavage through larval life, postlarval growth, and regeneration , 2019, Developmental dynamics : an official publication of the American Association of Anatomists.

[2]  A. Collins,et al.  Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits , 2018, BMC Evolutionary Biology.

[3]  A. Hejnol,et al.  A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species , 2017, bioRxiv.

[4]  Grigory Genikhovich,et al.  On the evolution of bilaterality , 2017, Development.

[5]  M. Martindale,et al.  The developmental basis for the recurrent evolution of deuterostomy and protostomy , 2016, Nature Ecology &Evolution.

[6]  Grigory Genikhovich,et al.  Pre-bilaterian origin of the blastoporal axial organizer , 2016, Nature Communications.

[7]  F. Rentzsch,et al.  Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8 , 2016, Development.

[8]  A. Abzhanov,et al.  A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history , 2015, Evolution; international journal of organic evolution.

[9]  E. Lanna Evo-devo of non-bilaterian animals , 2015, Genetics and molecular biology.

[10]  D. Fredman,et al.  Adoption of conserved developmental genes in development and origin of the medusa body plan , 2015, EvoDevo.

[11]  Mariya Shcheglovitova,et al.  Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria) , 2014, BMC Genomics.

[12]  K. Parsons,et al.  Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids , 2014, Nature Communications.

[13]  David Q. Matus,et al.  Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis. , 2013, Developmental biology.

[14]  H. Meinhardt Modeling pattern formation in hydra: a route to understanding essential steps in development. , 2012, The International journal of developmental biology.

[15]  Yukio Nakamura,et al.  Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer , 2011, Proceedings of the National Academy of Sciences.

[16]  David J. Duffy Modulation of Wnt signaling , 2011, Communicative & integrative biology.

[17]  David J. Duffy,et al.  Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration , 2010, Development.

[18]  Peter W. Reddien,et al.  Wnt Signaling and the Polarity of the Primary Body Axis , 2009, Cell.

[19]  Grigory Genikhovich,et al.  In situ hybridization of starlet sea anemone (Nematostella vectensis) embryos, larvae, and polyps. , 2009, Cold Spring Harbor protocols.

[20]  M. Martindale,et al.  A developmental perspective: changes in the position of the blastopore during bilaterian evolution. , 2009, Developmental cell.

[21]  I. Kosevich,et al.  Morphogenesis in colonial hydroids: Pulsating rudiment splitting , 2008, Russian Journal of Developmental Biology.

[22]  Romain Derelle,et al.  A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica , 2008, Development.

[23]  H. Bode,et al.  Divergent functions of two ancient Hydra Brachyury paralogues suggest specific roles for their C-terminal domains in tissue fate induction , 2007, Development.

[24]  Dirk Trauner,et al.  Engineering light-gated ion channels. , 2006, Biochemistry.

[25]  A. Meyer,et al.  Conservation and co-option in developmental programmes: the importance of homology relationships , 2005, Frontiers in Zoology.

[26]  R. Lang,et al.  Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. , 2005, Developmental biology.

[27]  A. Bookout,et al.  High‐Throughput Real‐Time Quantitative Reverse Transcription PCR , 2005, Current protocols in molecular biology.

[28]  D. Warburton,et al.  Molecular Mechanisms of Early Lung Specification and Branching Morphogenesis , 2005, Pediatric Research.

[29]  U. Technau,et al.  Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. , 2004, Developmental biology.

[30]  P. Cartwright The development and evolution of hydrozoan polyp and colony form , 2004, Hydrobiologia.

[31]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[32]  S. Berking,et al.  A shoot meristem-like organ in animals; monopodial and sympodial growth in Hydrozoa. , 2002, The International journal of developmental biology.

[33]  Christoph M. Happel,et al.  WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra , 2000, Nature.

[34]  L. Beloussov,et al.  Cell movements in morphogenesis of hydroid polypes. , 1972, Journal of embryology and experimental morphology.

[35]  H. Bode,et al.  Evolution of Developmental Control Mechanisms Multiple Wnts are involved in Hydra organizer formation and regeneration , 2009 .

[36]  A. Böttger,et al.  Metamorphosis of Hydractinia echinata (Cnidaria) is caspase-dependent. , 2006, The International journal of developmental biology.

[37]  A. Kühn Entwicklungsgeschichte und Verwandtschaftsbeziehungen der Hydrozoen, I. Teil. Die Hydroiden , 1923 .