Paper‐Based Electrodes for Flexible Energy Storage Devices

Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[3]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[4]  J. Jacobson,et al.  An electrophoretic ink for all-printed reflective electronic displays , 1998, Nature.

[5]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[6]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[7]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[8]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[9]  Thomas Gennett,et al.  High-energy, rechargeable Li-ion battery based on carbon nanotube technology , 2004 .

[10]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[11]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[12]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[13]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[14]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[15]  M. Endo,et al.  Nanotechnology: ‘Buckypaper’ from coaxial nanotubes , 2005, Nature.

[16]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[17]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[18]  Kang L. Wang,et al.  A chemical route to graphene for device applications. , 2007, Nano letters.

[19]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[20]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[21]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[22]  N. Coville,et al.  Floating catalyst CVD synthesis of carbon nanotubes from CpFe(CO)2X (X = Me, I): Poisoning effects of I , 2007 .

[23]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[24]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[25]  Yong Liu,et al.  Direct Growth of Flexible Carbon Nanotube Electrodes , 2008 .

[26]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[27]  G. Whitesides,et al.  Three-dimensional microfluidic devices fabricated in layered paper and tape , 2008, Proceedings of the National Academy of Sciences.

[28]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[29]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[30]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[31]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[32]  Dongqing Wu,et al.  Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions , 2009 .

[33]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[34]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[35]  G. Wallace,et al.  Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries , 2009 .

[36]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[37]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[38]  D. Deng,et al.  Reversible storage of lithium in a rambutan-like tin-carbon electrode. , 2009, Angewandte Chemie.

[39]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[40]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[41]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[42]  L. Nyholm,et al.  Ultrafast All-Polymer Paper-Based Batteries , 2009, Nano letters.

[43]  Po-Chiang Chen,et al.  Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films , 2009 .

[44]  Shuo Chen,et al.  Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. , 2009, Journal of the American Chemical Society.

[45]  G. Sumanasekera,et al.  Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. , 2009, Nano letters.

[46]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[47]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[48]  Byungwoo Kim,et al.  Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers , 2010 .

[49]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[50]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[51]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[52]  Hong-Bo Sun,et al.  Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction , 2010 .

[53]  Seth R. Marder,et al.  Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics , 2010, Science.

[54]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[55]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[56]  J. Amarilla,et al.  Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes , 2010 .

[57]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[58]  Zhixin Chen,et al.  Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries , 2010 .

[59]  Q. Xue,et al.  Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. , 2010, ACS applied materials & interfaces.

[60]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[61]  Dingshan Yu,et al.  Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors , 2010 .

[62]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[63]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[64]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[65]  J. Nam,et al.  Graphene/cellulose nanocomposite paper with high electrical and mechanical performances , 2011 .

[66]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[67]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[68]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[69]  Wei Luo,et al.  Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. , 2011, ACS nano.

[70]  Maria Strømme,et al.  Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device , 2011 .

[71]  Qiang Zhang,et al.  Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors , 2011 .

[72]  Xiaohong Liu,et al.  Flexible graphene/MnO2 composite papers for supercapacitor electrodes , 2011 .

[73]  Xingbin Yan,et al.  Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. , 2011, Nanoscale.

[74]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[75]  Lifeng Zhang,et al.  Flexible Nano‐felts of Carbide‐Derived Carbon with Ultra‐high Power Handling Capability , 2011 .

[76]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[77]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[78]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[79]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[80]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[81]  H. Chan,et al.  Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes , 2011 .

[82]  Jun Chen,et al.  Compact-designed supercapacitors using free-standing single-walled carbon nanotube films , 2011 .

[83]  Woo Y. Lee,et al.  Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide , 2011 .

[84]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[85]  Yi Cui,et al.  Improving the performance of lithium-sulfur batteries by conductive polymer coating. , 2011, ACS nano.

[86]  Meihua Jin,et al.  High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self‐Standing Carbon‐Nanofiber Paper , 2011 .

[87]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[88]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[89]  G. Wallace,et al.  Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance , 2011 .

[90]  Zhongwei Chen,et al.  Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films , 2011 .

[91]  Zhong Lin Wang,et al.  Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. , 2012, Nano letters.

[92]  Rajesh Rajamani,et al.  Flexible solid-state paper based carbon nanotube supercapacitor , 2012 .

[93]  Fei Liu,et al.  Folded Structured Graphene Paper for High Performance Electrode Materials , 2012, Advanced materials.

[94]  Yanwu Zhu,et al.  Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. , 2012, Nano letters.

[95]  Bruce Dunn,et al.  High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. , 2012, ACS nano.

[96]  Q. Xue,et al.  Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets , 2012 .

[97]  X. Lou,et al.  Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[98]  Liang Li,et al.  N‐Doped Graphene‐SnO2 Sandwich Paper for High‐Performance Lithium‐Ion Batteries , 2012 .

[99]  Feng Hou,et al.  Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. , 2012, Nanoscale.

[100]  L. Zhi,et al.  Rod‐Coating: Towards Large‐Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens , 2012, Advanced materials.

[101]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[102]  Claudio Gerbaldi,et al.  Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries , 2012 .

[103]  Andreas Winter,et al.  Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors , 2012, Advanced materials.

[104]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[105]  X. Zhang,et al.  Electrospun TiO2–Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries , 2012 .

[106]  Zongping Shao,et al.  From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries , 2012 .

[107]  Lidong Li,et al.  Flexible free-standing graphene/SnO₂ nanocomposites paper for Li-ion battery. , 2012, ACS applied materials & interfaces.

[108]  L. Nyholm,et al.  Paper‐Based Energy‐Storage Devices Comprising Carbon Fiber‐Reinforced Polypyrrole‐Cladophora Nanocellulose Composite Electrodes , 2012 .

[109]  Yiqing Sun,et al.  Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering , 2012, Scientific Reports.

[110]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[111]  Hui Dou,et al.  Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors , 2012 .

[112]  Teng Zhai,et al.  LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. , 2012, ACS nano.

[113]  Unyong Jeong,et al.  Mesoporous CuO Particles Threaded with CNTs for High‐Performance Lithium‐Ion Battery Anodes , 2012, Advanced materials.

[114]  Qiang Zhang,et al.  High-performance flexible lithium-ion electrodes based on robust network architecture , 2012 .

[115]  V. Presser,et al.  High power supercapacitor electrodes based on flexible TiC-CDC nano-felts , 2012 .

[116]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[117]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[118]  G. Shi,et al.  Graphene Hydrogels Deposited in Nickel Foams for High‐Rate Electrochemical Capacitors , 2012, Advanced materials.

[119]  Xiaodong Chen,et al.  A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes , 2012 .

[120]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[121]  Hui-Ming Cheng,et al.  A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries , 2012 .

[122]  J. Choi,et al.  Extremely stable cycling of ultra-thin V2O5 nanowire-graphene electrodes for lithium rechargeable battery cathodes , 2012 .

[123]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[124]  Jing Zhang,et al.  Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes , 2013 .

[125]  Yunlong Zhao,et al.  Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. , 2013, Nano letters.

[126]  Yu Huang,et al.  Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. , 2013, ACS nano.

[127]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[128]  J. Tu,et al.  Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries , 2013 .

[129]  Afriyanti Sumboja,et al.  Large Areal Mass, Flexible and Free‐Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device , 2013, Advanced materials.

[130]  Kefei Li,et al.  Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries , 2013 .

[131]  Yi Xie,et al.  Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors , 2013, Nature Communications.

[132]  Meilin Liu,et al.  Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. , 2013, Nano letters.

[133]  Jie Lian,et al.  Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials , 2013 .

[134]  Lijia Pan,et al.  3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices , 2013 .

[135]  Sanjaya D. Perera,et al.  Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors , 2013 .

[136]  Yulong Ying,et al.  Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[137]  Lian Gao,et al.  Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries , 2013 .

[138]  Wen Chen,et al.  Polypyrrole-coated paper for flexible solid-state energy storage , 2013 .

[139]  Guangyuan Zheng,et al.  Silicon-conductive nanopaper for Li-ion batteries , 2013 .

[140]  D. Wexler,et al.  Rapid synthesis of free-standing MoO3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries , 2013 .

[141]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[142]  Y. Tong,et al.  3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. , 2013, Nanoscale.

[143]  Chi Cheng,et al.  Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage , 2013, Science.

[144]  Zhong Lin Wang,et al.  A paper-based nanogenerator as a power source and active sensor , 2013 .

[145]  X. Duan,et al.  A low-temperature method to produce highly reduced graphene oxide , 2013, Nature Communications.

[146]  Zhixiang Wei,et al.  Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors , 2013, Advanced materials.

[147]  Xu Xiao,et al.  Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[148]  Yi Cui,et al.  Nanostructured paper for flexible energy and electronic devices , 2013 .

[149]  Xiao Xie,et al.  Microscopic bimetallic actuator based on a bilayer of graphene and graphene oxide. , 2013, Nanoscale.

[150]  Ning Zhang,et al.  Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance , 2013 .

[151]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[152]  Teng Zhai,et al.  High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. , 2013, Nano letters.

[153]  Fang Qian,et al.  High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. , 2013, Nanoscale.

[154]  Guang He,et al.  Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. , 2013, ACS nano.

[155]  Gang Wang,et al.  Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors , 2013 .

[156]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[157]  Jitong Wang,et al.  A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles , 2013 .

[158]  Tao Wen,et al.  Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. , 2013, ACS nano.

[159]  Kazuhito Tsukagoshi,et al.  Rational design of a high performance all solid state flexible micro-supercapacitor on paper , 2013 .

[160]  Yu-Guo Guo,et al.  Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries , 2013 .

[161]  Shuhong Yu,et al.  Flexible graphene–polyaniline composite paper for high-performance supercapacitor , 2013 .

[162]  H. Cui,et al.  Flexible transparent and free-standing silicon nanowires paper. , 2013, Nano letters.

[163]  A. Hirata,et al.  Electroplated Thick Manganese Oxide Films with Ultrahigh Capacitance , 2013 .

[164]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[165]  M. Schwab,et al.  Screen‐Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks , 2013 .

[166]  Xiaogang Han,et al.  Natural cellulose fiber as substrate for supercapacitor. , 2013, ACS nano.

[167]  S. Luan,et al.  Electric papers of graphene-coated Co₃O₄ fibers for high-performance lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[168]  Tao Yu,et al.  Highly Photo‐Responsive LaTiO2N Photoanodes by Improvement of Charge Carrier Transport among Film Particles , 2014 .

[169]  Meng Li,et al.  Flexible Solid‐State Supercapacitor Based on Graphene‐based Hybrid Films , 2014 .

[170]  Teng Zhai,et al.  Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell , 2014, Advanced Energy Materials.

[171]  Ting-ting Chen,et al.  Porous titanium oxynitride sheets as electrochemical electrodes for energy storage. , 2014, Nanoscale.

[172]  Y. Tong,et al.  Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors , 2014 .

[173]  Guang Yang,et al.  Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices , 2014 .

[174]  Yu Huang,et al.  Holey graphene frameworks for highly efficient capacitive energy storage , 2014, Nature Communications.

[175]  Shuang Yuan,et al.  Advances and challenges for flexible energy storage and conversion devices and systems , 2014 .

[176]  Y. Tong,et al.  A New Benchmark Capacitance for Supercapacitor Anodes by Mixed‐Valence Sulfur‐Doped V6O13−x , 2014, Advanced materials.

[177]  Gunuk Wang,et al.  Flexible three-dimensional nanoporous metal-based energy devices. , 2014, Journal of the American Chemical Society.

[178]  Ben Wang,et al.  A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. , 2014, ACS nano.

[179]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[180]  Wenjie Mai,et al.  Flexible solid-state electrochemical supercapacitors , 2014 .

[181]  X. Lou,et al.  Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide , 2014, Nature Communications.

[182]  G. Gary Wang,et al.  Flexible solid-state supercapacitors: design, fabrication and applications , 2014 .

[183]  Y. Tong,et al.  Flexible symmetrical planar supercapacitors based on multi-layered MnO2/Ni/graphite/paper electrodes with high-efficient electrochemical energy storage , 2014 .

[184]  Tianxi Liu,et al.  One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors. , 2014, Nanoscale.

[185]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[186]  L. Francis,et al.  Gravure Printing of Graphene for Large‐area Flexible Electronics , 2014, Advanced materials.

[187]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[188]  Yi Cui,et al.  Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface , 2014, Nature Communications.

[189]  Zhiqiang Fang,et al.  Transparent paper: fabrications, properties, and device applications , 2014 .

[190]  Yuanlong Shao,et al.  Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures , 2014 .

[191]  Weihan Li,et al.  Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode. , 2014, Nanoscale.

[192]  Zexiang Shen,et al.  High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film , 2014 .

[193]  Yunhui Huang,et al.  Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors , 2014 .

[194]  Yun-Sung Lee,et al.  Insertion-type electrodes for nonaqueous Li-ion capacitors. , 2014, Chemical reviews.

[195]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[196]  Teng Zhai,et al.  Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. , 2014, Nano letters.

[197]  Paul M. DiCarmine,et al.  Polyfullerene Electrodes for High Power Supercapacitors , 2014 .

[198]  B. Wei,et al.  In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode , 2014 .

[199]  Bin Li,et al.  Evolution of cellulose into flexible conductive green electronics: a smart strategy to fabricate sustainable electrodes for supercapacitors , 2014 .

[200]  Y. Gogotsi,et al.  Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors , 2014 .

[201]  Linong Wang,et al.  Hierarchical carbon nanotube/α-Ni(OH)2 nanosheet composite paper with enhanced electrochemical capacitance , 2014 .

[202]  Afriyanti Sumboja,et al.  Flexible and Highly Scalable V2O5‐rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices , 2014 .

[203]  Yi Cui,et al.  Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. , 2014, Nano letters.

[204]  Meng Li,et al.  Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay. , 2014, Chemical communications.

[205]  Zhenan Bao,et al.  A Three‐Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for High‐Performance Flexible Battery Electrodes , 2014 .

[206]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[207]  Quan-hong Yang,et al.  On the origin of the stability of graphene oxide membranes in water. , 2015, Nature chemistry.

[208]  Yun Lu,et al.  Flexible α-MnO 2 paper formed by millimeter-long nanowires for supercapacitor electrodes , 2014 .

[209]  Yi Xie,et al.  All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite , 2014 .

[210]  Yong Zhao,et al.  Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors , 2014 .

[211]  Zhixiang Wei,et al.  Conducting polymer nanowire arrays for high performance supercapacitors. , 2014, Small.

[212]  Cheng-Wei Lin,et al.  Pencil Drawn Strain Gauges and Chemiresistors on Paper , 2014, Scientific Reports.

[213]  Yan Liu,et al.  Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor , 2014 .

[214]  Jun Zhou,et al.  Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability , 2015 .

[215]  P. Chu,et al.  Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors , 2015 .

[216]  Yat Li,et al.  Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. , 2015, Nanoscale.

[217]  Yury Gogotsi,et al.  Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance , 2015, Advanced materials.

[218]  E. Xie,et al.  Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors. , 2015, ACS applied materials & interfaces.

[219]  Wei Lu,et al.  Aqueous manganese dioxide ink for paper-based capacitive energy storage devices. , 2015, Angewandte Chemie.

[220]  Jun Zhou,et al.  Paper‐Based Active Tactile Sensor Array , 2015, Advanced materials.

[221]  Wei He,et al.  High capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries , 2015 .

[222]  John Wang,et al.  Flexible Asymmetric Supercapacitor Based on Structure‐Optimized Mn3O4/Reduced Graphene Oxide Nanohybrid Paper with High Energy and Power Density , 2015 .

[223]  C. V. Singh,et al.  A Foldable Lithium-Sulfur Battery. , 2015, ACS nano.

[224]  Jian Jiang,et al.  Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells , 2015, Nature Communications.

[225]  Yunpeng Huang,et al.  Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries. , 2015, Nanoscale.

[226]  Tianqi Li,et al.  HxMoO3−y nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices , 2015 .

[227]  Xu Xiao,et al.  Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors , 2015, Nanotechnology.

[228]  Qian Yang,et al.  Large‐Area Polyimide/SWCNT Nanocable Cathode for Flexible Lithium‐Ion Batteries , 2015, Advanced materials.

[229]  Dong Ding,et al.  Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity. , 2015, ACS applied materials & interfaces.

[230]  Yury Gogotsi,et al.  Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices , 2015, Advanced materials.

[231]  Tao Yang,et al.  Metal hydroxide – a new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium–sulfur batteries , 2015 .

[232]  Yunhui Huang,et al.  Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors , 2015 .

[233]  Yi Cui,et al.  Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium-Sulfur Batteries. , 2015, Nano letters.

[234]  Xing Lu,et al.  A High‐Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures , 2015 .

[235]  Feng Li,et al.  A Flexible Sulfur‐Graphene‐Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries , 2015, Advanced materials.

[236]  Sreekumar Kurungot,et al.  Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor , 2015 .

[237]  Shayan Seyedin,et al.  High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films , 2015, Scientific Reports.

[238]  Jun Zhou,et al.  2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. , 2015, Nanoscale.

[239]  Chaodi Xu,et al.  Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries , 2015 .

[240]  Tao Cheng,et al.  Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. , 2015, Chemical Society reviews.

[241]  A. Hirata,et al.  Nanoporous Metal Papers for Scalable Hierarchical Electrode , 2015, Advanced science.

[242]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[243]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[244]  Xue-Feng Lu,et al.  Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. , 2015, ACS applied materials & interfaces.

[245]  Dan Xu,et al.  Flexible lithium–oxygen battery based on a recoverable cathode , 2015, Nature Communications.

[246]  Y. Tong,et al.  An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. , 2015, Nano letters.

[247]  M. El‐Kady,et al.  Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage , 2015 .

[248]  Kesavan Devarayan,et al.  Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor , 2015 .

[249]  W. Mai,et al.  Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole , 2015 .

[250]  Rachel Ye,et al.  Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries , 2015 .

[251]  J. Gerbec,et al.  Nanostructured Mn-Doped V2O5 Cathode Material Fabricated from Layered Vanadium Jarosite , 2015 .

[252]  H. Yoon,et al.  Free‐Standing, Multilayered Graphene/Polyaniline‐Glue/Graphene Nanostructures for Flexible, Solid‐State Electrochemical Capacitor Application , 2015 .

[253]  Yunhui Huang,et al.  Nanostructured Mo-based electrode materials for electrochemical energy storage. , 2015, Chemical Society reviews.

[254]  Weihua Tang,et al.  Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors , 2015 .

[255]  Dan Xu,et al.  Flexible and Foldable Li–O2 Battery Based on Paper‐Ink Cathode , 2015, Advanced materials.

[256]  Yi Cui,et al.  Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. , 2015, Nano letters.

[257]  W. Mai,et al.  Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors , 2015 .

[258]  Zhijun Qiao,et al.  Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors. , 2015, ACS nano.

[259]  V. Pavlínek,et al.  MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes , 2015 .

[260]  Yu Song,et al.  Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors , 2015 .

[261]  Xu Xiao,et al.  Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode , 2015 .

[262]  I-Wei Chen,et al.  Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage , 2015, Science.

[263]  Xiluan Wang,et al.  Flexible graphene devices related to energy conversion and storage , 2015 .

[264]  Xuming Zhang,et al.  Nitrogen‐Doped Carbon Encapsulated Mesoporous Vanadium Nitride Nanowires as Self‐Supported Electrodes for Flexible All‐Solid‐State Supercapacitors , 2015 .

[265]  Jitong Wang,et al.  Free-Standing T-Nb₂O₅/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. , 2015, ACS nano.

[266]  Jun Zhou,et al.  Self-Powered Human-Interactive Transparent Nanopaper Systems. , 2015, ACS nano.

[267]  Yury Gogotsi,et al.  Porous Two‐Dimensional Transition Metal Carbide (MXene) Flakes for High‐Performance Li‐Ion Storage , 2016 .

[268]  Jun Wan,et al.  Microwave Combustion for Modification of Transition Metal Oxides , 2016, 2016 Asia Communications and Photonics Conference (ACP).

[269]  Carlos Alemán,et al.  Powering the future: application of cellulose-based materials for supercapacitors , 2016 .

[270]  Zhiqiang Fang,et al.  Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. , 2016, Chemical reviews.

[271]  Tianxi Liu,et al.  Flexible Electrospun Carbon Nanofiber@NiS Core/Sheath Hybrid Membranes as Binder‐Free Anodes for Highly Reversible Lithium Storage , 2016 .

[272]  Bin Yao,et al.  Tri-layered graphite foil for electrochemical capacitors , 2016 .

[273]  Guozhong Cao,et al.  Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors , 2016 .

[274]  M. El‐Kady,et al.  3D Freeze‐Casting of Cellular Graphene Films for Ultrahigh‐Power‐Density Supercapacitors , 2016, Advanced materials.

[275]  F. Zhang,et al.  Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries , 2016, Advanced science.

[276]  B. Tay,et al.  Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities , 2016 .

[277]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[278]  Jing Zhang,et al.  Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage , 2016, Advanced materials.

[279]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[280]  R. Sun,et al.  Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper. , 2016, ACS nano.

[281]  Xingcheng Xiao,et al.  Graphene‐Based Nanocomposites for Energy Storage , 2016 .

[282]  Xu Xiao,et al.  Scalable salt-templated synthesis of two-dimensional transition metal oxides , 2016, Nature Communications.

[283]  Kang Liu,et al.  Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor , 2016 .

[284]  Zhimin Li,et al.  Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor , 2016 .

[285]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[286]  Ke Li,et al.  Free-Standing Conducting Polymer Films for High-Performance Energy Devices. , 2016, Angewandte Chemie.

[287]  J. Janek,et al.  Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle , 2016 .

[288]  Jie Xu,et al.  Recent Advancements in Functionalized Paper-Based Electronics. , 2016, ACS applied materials & interfaces.

[289]  Tianyi Kou,et al.  Hierarchically porous carbon foams for electric double layer capacitors , 2016, Nano Research.

[290]  Xiaoyan Hu,et al.  Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers , 2016 .

[291]  Qingqing Ke,et al.  Hybrid Fe2O3 Nanoparticle Clusters/rGO Paper as an Effective Negative Electrode for Flexible Supercapacitors , 2016 .

[292]  Meilin Liu,et al.  A Scalable Free‐Standing V2O5/CNT Film Electrode for Supercapacitors with a Wide Operation Voltage (1.6 V) in an Aqueous Electrolyte , 2016 .

[293]  Maher F. El-Kady,et al.  Graphene for batteries, supercapacitors and beyond , 2016 .

[294]  P. Chu,et al.  Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors , 2016 .

[295]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[296]  Ke Gong,et al.  Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films. , 2016, ACS nano.

[297]  Y. Gogotsi,et al.  Ethanol reduced molybdenum trioxide for Li-ion capacitors , 2016 .

[298]  G. Shi,et al.  An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering , 2016 .

[299]  S. Jiang,et al.  Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors , 2016 .

[300]  X. Lou,et al.  Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. , 2016, Angewandte Chemie.

[301]  Fang Qian,et al.  Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. , 2016, Nano letters.

[302]  Yang Li,et al.  Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes , 2016, Advanced materials.

[303]  S. Dou,et al.  Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction. , 2016, ACS applied materials & interfaces.

[304]  Peixin Zhang,et al.  3D Networks of Carbon‐Coated Magnesium‐Doped Olivine Nanofiber as Binder‐Free Cathodes for High‐Performance Li‐Ion Battery , 2016 .

[305]  Jianhua Hao,et al.  Magnetic‐Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions , 2016, Advanced materials.

[306]  Xingxiang Zhang,et al.  Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance , 2016 .

[307]  Xiaodong He,et al.  Multifunctional, Highly Flexible, Free-Standing 3D Polypyrrole Foam. , 2016, Small.

[308]  Wenjia Zhao,et al.  Free-standing α-Co(OH)2/graphene oxide thin films fabricated through delamination and reassembling of acetate anions intercalated α-Co(OH)2 and graphene oxide in water. , 2016, Journal of colloid and interface science.

[309]  Fang Qian,et al.  Ion Intercalation Induced Capacitance Improvement for Graphene-Based Supercapacitor Electrodes , 2016 .

[310]  D. Aurbach,et al.  Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors , 2016 .

[311]  Jitong Wang,et al.  Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery , 2016 .

[312]  Tianqi Li,et al.  Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode , 2017 .

[313]  Jian Zhu,et al.  Wearable High‐Performance Supercapacitors Based on Silver‐Sputtered Textiles with FeCo2S4–NiCo2S4 Composite Nanotube‐Built Multitripod Architectures as Advanced Flexible Electrodes , 2017 .

[314]  Jianhua Hao,et al.  Environmentally Friendly Hydrogel‐Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self‐Powered Sensors , 2017 .

[315]  Bin Yao,et al.  Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability. , 2017, Small.