Measurement and comparison of Leaf Area Index estimators derived from satellite remote sensing techniques

Leaf Area Index (LAI) is an important biophysical characteristic of vegetation that is directly related to rates of atmospheric gas exchange, biomass partitioning, and productivity. Mapping and monitoring LAI over scales from landscapes to regions is essential for understanding medium-scale biophysical properties and how these properties affect biogeochemical cycling, biomass accumulation, and primary productivity. This study developed and verified several models to estimate LAI using in situ field measurements, Landsat Thematic Mapper imagery, vegetation indices, simple and multiple regression, and artificial neural networks (ANNs). It was shown that while multiple band regression and regression with individual vegetation indices can estimate LAI, the most accurate way to estimate regional scale LAI is to train an ANN using in situ LAI data and remote sensing brightness values.

[1]  R. Jensen Spatial and Temporal Leaf Area Index Dynamics in a North Central Florida, USA Preserve , 2002 .

[2]  Douglas G. Goodin,et al.  Land Cover Change and Associated Trends in Surface Reflectivity and Vegetation Index in Southwest Kansas: 1972-1992 , 2002 .

[3]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[4]  F. Baret,et al.  Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data , 1999 .

[5]  John R. Jensen,et al.  Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data , 1999 .

[6]  M. MacKenzie,et al.  Ecological land classification in the Southern Loam Hills of south Alabama 1 Botanical nomenclature , 1999 .

[7]  Alan H. Strahler,et al.  Fuzzy Neural Network Classification of Global Land Cover from a 1° AVHRR Data Set , 1999 .

[8]  B. Datt Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves , 1998 .

[9]  Xiao‐Hai Yan,et al.  A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery , 1998 .

[10]  R. Lawrence,et al.  Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape : Mount St. Helens, Washington , 1998 .

[11]  Hugh J. Barclay,et al.  Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. , 1998, Tree physiology.

[12]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[13]  T. M. Lillesand,et al.  Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper , 1997 .

[14]  A. C. Ellis,et al.  Estimating leaf area index of mangroves from satellite data , 1997 .

[15]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[16]  S. Gopal,et al.  Remote sensing of forest change using artificial neural networks , 1996, IEEE Trans. Geosci. Remote. Sens..

[17]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[18]  Hui Qing Liu,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[19]  C. Justice,et al.  The generation of global fields of terrestrial biophysical parameters from the NDVI , 1994 .

[20]  Sigeru Omatu,et al.  Neural network approach to land cover mapping , 1994, IEEE Trans. Geosci. Remote. Sens..

[21]  Gérard Dedieu,et al.  Methodology for the estimation of terrestrial net primary production from remotely sensed data , 1994 .

[22]  C. Wessman,et al.  Canopy transmittance models for estimating forest leaf area index , 1993 .

[23]  P. Reich,et al.  Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest , 1993, Oecologia.

[24]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[25]  M. Huston,et al.  A comparison of direct and indirect methods for estimating forest canopy leaf area , 1991 .

[26]  Stanley R. Herwitz,et al.  Thematic mapper detection of changes in the leaf area of closed canopy pine plantations in Central Massachusetts , 1989 .

[27]  Jon Atli Benediktsson,et al.  Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[28]  S. Running,et al.  Numerical Terradynamic Simulation Group 12-1988 Rapid Estimation of Coniferous Forest Leaf Area Index Using a Portable Integrating Radiometer , 2018 .

[29]  F. Baker,et al.  The International Geosphere-Biosphere Programme (IGBP): A Study of Global Change , 1988, Environmental Conservation.

[30]  Paul M. Mather,et al.  Computer Processing of Remotely-Sensed Images: An Introduction , 1988 .

[31]  R. Jackson Spectral indices in N-Space , 1983 .

[32]  Henry L. Gholz,et al.  Environmental Limits on Aboveground Net Primary Production, Leaf Area, and Biomass in Vegetation Zones of the Pacific Northwest , 1982 .

[33]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[34]  L. Lymburner,et al.  Estimation of Canopy-Average Surface-Specific Leaf Area Using Landsat TM Data , 2000 .

[35]  P. Curran,et al.  Assessing Leaf Area and Canopy Biochemistry of Florida Pine Plantations Using Remote Sensing , 1997 .

[36]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[37]  D. Hartnett,et al.  Pine flatwoods and dry prairies , 1990 .

[38]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[39]  T. Hinckley,et al.  CHAPTER 3 – TEMPERATE HARDWOOD FORESTS , 1981 .