Roles and effects of environmental carbon dioxide in insect life.

Carbon dioxide (CO(2)) is a ubiquitous sensory cue that plays multiple roles in insect behavior. In recent years understanding of the well-known role of CO(2) in foraging by hematophagous insects (e.g., mosquitoes) has grown, and research on the roles of CO(2) cues in the foraging and oviposition behavior of phytophagous insects and in behavior of social insects has stimulated interest in this area of insect sensory biology. This review considers those advances, as well as some of the mechanistic bases of the modulation of behavior by CO(2) and important progress in our understanding of the detection and CNS processing of CO(2) information in insects. Finally, this review briefly addresses how the ongoing increase in atmospheric CO(2) levels may affect insect life.

[1]  A. Cork,et al.  Identification of electrophysiologically‐active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts , 1996, Medical and veterinary entomology.

[2]  K. Kaissling,et al.  Flux detectors versus concentration detectors: two types of chemoreceptors. , 1998, Chemical senses.

[3]  S. Torr Dose responses of tsetse flies (Glossina) to carbon dioxide, acetone and octenol in the field , 1990 .

[4]  A. G. Nicolas,et al.  Immediate and Latent Effects of Carbon Dioxide on Insects , 1989 .

[5]  J. Whittaker Impacts and responses at population level of herbivorous insects to elevated CO2. , 1999 .

[6]  Erika A. Sudderth,et al.  Host‐specific aphid population responses to elevated CO2 and increased N availability , 2005 .

[7]  Anupama Dahanukar,et al.  Insect odor and taste receptors. , 2006, Annual review of entomology.

[8]  Manfred Forstreuter,et al.  Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context , 2006, Journal of Experimental Biology.

[9]  G. Gibson,et al.  Visual and olfactory responses of haematophagous Diptera to host stimuli , 1999, Medical and veterinary entomology.

[10]  R. Barrozo,et al.  The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours. , 2004, Chemical senses.

[11]  Y. Toh,et al.  Electrophysiological studies on the temporal organ of the Japanese house centipede, Thereuonema hilgendorfi , 1986 .

[12]  W. Takken,et al.  Synthesis and future challenges: the response of mosquitoes to host odours. , 1996, Ciba Foundation symposium.

[13]  M. Canals,et al.  Field tests of carbon dioxide and conspecifics as baits for Mepraia spinolai, wild vector of Chagas disease. , 2002, Acta tropica.

[14]  S. Anton Central olfactory pathways in mosquitoes and other insects. , 1996, Ciba Foundation symposium.

[15]  J. Hildebrand,et al.  Floral CO2 Reveals Flower Profitability to Moths , 2004, Journal of Chemical Ecology.

[16]  J. Rospars,et al.  Quantitative analysis of olfactory receptor neuron projections in the antennal lobe of the malaria mosquito, Anopheles gambiae , 2004, The Journal of comparative neurology.

[17]  F. E. Kellogg Water vapour and carbon dioxide receptors in Aedes aegypti. , 1970, Journal of insect physiology.

[18]  H. Altner,et al.  Primary sensory projections of the labial palp-pit organ of pieris rapae l. (lepidoptera : pieridae) , 1986 .

[19]  Erika A. Sudderth,et al.  Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2 , 2006 .

[20]  Andreas Keller,et al.  Decoding olfaction in Drosophila , 2003, Current Opinion in Neurobiology.

[21]  Christoph Kleineidam,et al.  Collective control of nest climate parameters in bumblebee colonies , 2002, Animal Behaviour.

[22]  R. Seymour,et al.  Thermogenesis and respiration of inflorescences of the dead horse arum Helicodiceros muscivorus, a pseudo‐thermoregulatory aroid associated with fly pollination , 2003 .

[23]  U. Homberg,et al.  Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda) , 2005 .

[24]  G. Stange,et al.  Carbon‐dioxide sensing structures in terrestrial arthropods , 1999, Microscopy research and technique.

[25]  M. Geier,et al.  L‐lactic acid: a human‐signifying host cue for the anthropophilic mosquito Anopheles gambiae , 2002, Medical and veterinary entomology.

[26]  David J. Anderson,et al.  Light Activation of an Innate Olfactory Avoidance Response in Drosophila , 2007, Current Biology.

[27]  Paul C. Jepson,et al.  Host location by Aedes aegypti (Diptera: Culicidae): a wind tunnel study of chemical cues , 1991 .

[28]  S. Hättenschwiler,et al.  Gypsy moth feeding in the canopy of a CO2‐enriched mature forest , 2004 .

[29]  J. Hildebrand,et al.  Development of the labial pit organ glomerulus in the antennal lobe of the moth Manduca sexta: the role of afferent projections in the formation of identifiable olfactory glomeruli. , 1999, Journal of neurobiology.

[30]  R. Barrozo,et al.  Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus , 2006, Journal of Comparative Physiology A.

[31]  W. Takken,et al.  Odor-induced host location in tsetse flies (Diptera: Glossinidae) , 1994, Journal of medical entomology.

[32]  G. Stange,et al.  Moth response to climate , 1993, Nature.

[33]  D. Barnard,et al.  Synergistic Attraction of Aedes aegypti (L.) to Binary Blends of L-Lactic Acid and Acetone, Dichloromethane, or Dimethyl Disulfide , 2003, Journal of medical entomology.

[34]  W. G. Evans,et al.  Turbulent plumes of heat, moist heat, and carbon dioxide elicit upwind anemotaxis in tsetse flies Glossina morsitans morsitans Westwood (Diptera: Glossinidae) , 2002 .

[35]  M. Hilker,et al.  A Plant Notices Insect Egg Deposition and Changes Its Rate of Photosynthesis1 , 2005, Plant Physiology.

[36]  T. P. Mack,et al.  Artificial Carbon Dioxide Source to Attract Lesser Cornstalk Borer (Lepidoptera: Pyralidae) Larvae , 2001, Journal of economic entomology.

[37]  T. M. Bezemer,et al.  Plant-Insect Herbivore Interactions in Elevated Atmospheric CO 2 : Quantitative Analyses and Guild Effects , 1998 .

[38]  Edward E. Southwick,et al.  Social control of air ventilation in colonies of honey bees, Apis mellifera , 1987 .

[39]  M. Geier,et al.  A new Y‐tube olfactometer for mosquitoes to measure the attractiveness of host odours , 1999 .

[40]  John R. Carlson,et al.  The molecular basis of CO2 reception in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[41]  W. Takken,et al.  Odor-mediated behavior of Afrotropical malaria mosquitoes. , 1999, Annual review of entomology.

[42]  G. Walther Tackling Ecological Complexity in Climate Impact Research , 2007, Science.

[43]  F. Roces,et al.  Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri , 2000, Insectes Sociaux.

[44]  Flavio Roces,et al.  Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri , 2001, Naturwissenschaften.

[45]  J. Núñez Food source orientation and activity in Rhodnius prolixus Stål (Hemiptera: Reduviidae) , 1982 .

[46]  G. Stange Sensory and Behavioural Responses of Terrestrial Invertebrates to Biogenic Carbon Dioxide Gradients , 1996 .

[47]  D. Kline,et al.  Adult biting midge response to trap type, carbon dioxide, and an octenol-phenol mixture in northwestern Florida. , 2002, Journal of the American Mosquito Control Association.

[48]  M. Lehane Location of the host , 1991 .

[49]  P. Guerin,et al.  Oriented responses of the triatomine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere , 1995, Journal of Comparative Physiology A.

[50]  M. Hunter Effects of elevated atmospheric carbon dioxide on insect–plant interactions , 2001 .

[51]  O. Jones,et al.  A BASIS FOR HOST PLANT FINDING IN PHYTOPHAGOUS LARVAE , 1978 .

[52]  P. Guerenstein,et al.  Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. , 2001, The Journal of experimental biology.

[53]  P. Steullet,et al.  Perception of breath components by the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae) , 1992, Journal of Comparative Physiology A.

[54]  C. P. Wheater,et al.  Does the Small White Butterfly (Pieris rapae L.) Aggregate Eggs on Plants with Greater Gas Exchange Activity? , 2001, Journal of Insect Behavior.

[55]  G. Stange Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum , 1997, Oecologia.

[56]  R. Raguso Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. , 2004, Current opinion in plant biology.

[57]  Leslie B. Vosshall,et al.  Two chemosensory receptors together mediate carbon dioxide detection in Drosophila , 2007, Nature.

[58]  M. Berenbaum,et al.  Elevated CO2 reduces leaf damage by insect herbivores in a forest community. , 2005, The New phytologist.

[59]  E. Nordheim,et al.  Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype , 2003, Oecologia.

[60]  C. Hew,et al.  Rhythmic Production of CO2 by Tropical Orchid Flowers , 1978 .

[61]  G. Stange Carbon Dioxide Is a Close-Range Oviposition Attractant in the Queensland Fruit Fly Bactrocera tryoni , 1999, Naturwissenschaften.

[62]  C. J. Otter,et al.  Single cell recordings from tsetse (Glossina m.morsitans) antennae reveal olfactory, mechano ‐ and cold receptors , 1992 .

[63]  J. K. Lee,et al.  Lamellated outer dendritic segments of a chemoreceptor within wall-pore sensilla in the labial palp-pit organ of the butterfly, Pieris rapae L. (Insecta, Lepidoptera) , 1985, Cell and Tissue Research.

[64]  C. Ammann,et al.  Dispersion of carbon dioxide plumes in African woodland: implications for host‐finding by tsetse flies , 2004 .

[65]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[66]  C. P. Wheater,et al.  Biogenic gradients of CO2 and H2O and oviposition by the small white butterfly (Pieris rapae L.) in cages , 2004 .

[67]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[68]  Anja Weidenmüller,et al.  The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response , 2004 .

[69]  R. Barrozo,et al.  Circadian rhythm of behavioural responsiveness to carbon dioxide in the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae). , 2004, Journal of insect physiology.

[70]  W. Takken,et al.  Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). , 2005, Chemical Sensors.

[71]  L. Bjostad,et al.  Reinvestigation of Host Location by Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae): CO2 Is the Only Volatile Attractant , 1998 .

[72]  J. Trumble,et al.  Plant allocation to defensive compounds: interactions between elevated CO(2) and nitrogen in transgenic cotton plants. , 2002, Journal of experimental botany.

[73]  J. Hildebrand,et al.  Sensory processing of ambient CO2 information in the brain of the moth Manduca sexta , 2004, Journal of Comparative Physiology A.

[74]  J. Hildebrand,et al.  Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths , 2005 .

[75]  F. Bogner,et al.  CO2 sensitive receptors on labial palps ofRhodogastria moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection , 1986, Journal of Comparative Physiology A.

[76]  J. Tautz,et al.  Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. , 2000, Arthropod structure & development.

[77]  J. Hildebrand,et al.  An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths , 1986, Cell and Tissue Research.

[78]  R. O'connell,et al.  Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide , 1995, Journal of Comparative Physiology A.

[79]  F. Bogner Response properties of CO2‐sensitive receptors in tsetse flies (Diptera: Glossina Palpalis) , 1992 .

[80]  F. Bogner Sensory physiological investigation of carbon dioxide receptors in lepidoptera , 1990 .

[81]  M. Berenbaum,et al.  Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana , 2005, Oecologia.

[82]  J. Monro,et al.  Egg clumping, host plant selection and population regulation in Cactoblastis cactorum (Lepidoptera) , 1981, Oecologia.

[83]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[85]  M. Geier,et al.  Contribution of fatty acids to olfactory host finding of female Aedes aegypti. , 2000, Chemical senses.

[86]  J. Trumble,et al.  Effects of Elevated Atmospheric Carbon Dioxide on Insect‐Plant Interactions , 1999 .

[87]  Geier,et al.  Influence of odour plume structure on upwind flight of mosquitoes towards hosts , 1999, The Journal of experimental biology.

[88]  W. Takken,et al.  Olfactory regulation of mosquito-host interactions. , 2004, Insect biochemistry and molecular biology.

[89]  F. Yokohari,et al.  Moist and dry hygroreceptors for relative humidity of the cockroach,Periplaneta americana L. , 2004, Journal of comparative physiology.

[90]  B. Hansson,et al.  Neuronal architecture of the mosquito deutocerebrum , 2005, The Journal of comparative neurology.

[91]  J. Núñez,et al.  Baker's yeast, an attractant for baiting traps for Chagas' disease vectors , 1995, Experientia.

[92]  Jürg Fuhrer,et al.  Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change , 2003 .

[93]  R. Barrozo,et al.  Orientation behaviour of the blood-sucking bug triatoma infestans to short-chain fatty acids: synergistic effect of L-lactic acid and carbon dioxide. , 2004, Chemical senses.

[94]  D. Macdonald,et al.  The Ectoparasites of the European Badger, Meles meles, and the Behavior of the Host-Specific Flea, Paraceras melis , 1999, Journal of Insect Behavior.

[95]  W. Takken,et al.  Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. , 2003, Arthropod structure & development.

[96]  R. Steinbrecht,et al.  Atlas of olfactory organs of Drosophila melanogaster , 1999 .

[97]  U. Waldow Elektrophysiologische Untersuchungen an Feuchte-, Trocken- und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta , 1970, Zeitschrift für vergleichende Physiologie.

[98]  J. Hildebrand,et al.  Floral CO2 emission may indicate food abundance to nectar-feeding moths , 2004, Naturwissenschaften.

[99]  P. Guerin,et al.  Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia , 2004, Journal of Comparative Physiology A.

[100]  Willem Takken,et al.  The Role of Olfaction in Host-Seeking of Mosquitoes: A Review , 1991 .

[101]  T. Seeley,et al.  Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. , 1974, Journal of insect physiology.

[102]  R. O'connell,et al.  Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla. , 1996, Ciba Foundation symposium.

[103]  S. Torr,et al.  The effects of host physiology on the attraction of tsetse (Diptera: Glossinidae) and Stomoxys (Diptera: Muscidae) to cattle , 2006, Bulletin of Entomological Research.

[104]  M. Berenbaum,et al.  Anthropogenic Changes in Tropospheric Composition Increase Susceptibility of Soybean to Insect Herbivory , 2005 .

[105]  W. Takken,et al.  Structure of host‐odour plumes influences catch of Anopheles gambiae s.s. and Aedes aegypti in a dual‐choice olfactometer , 2001 .

[106]  J. Ziesmann The physiology of an olfactory sensillum of the termite Schedorhinotermes lamanianus: carbon dioxide as a modulator of olfactory sensitivity , 1996, Journal of Comparative Physiology.

[107]  E. P. McDonald,et al.  CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria) , 2005 .

[108]  M. Geier,et al.  Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours , 2005, Journal of Experimental Biology.

[109]  D. Kline,et al.  Electrophysiological Responses from Culicoides (Diptera: Ceratopogonidae) to Stimulation with Carbon Dioxide , 2003, Journal of medical entomology.

[110]  J. Tautz,et al.  Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting antAtta cephalotes , 1996, Naturwissenschaften.

[111]  M. Gillies.,et al.  The Role of Carbon Dioxide in Host-Finding by Mosquitoes (Diptera: Culicidae): A Review , 1980 .

[112]  C. Osmond,et al.  The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta , 1995, Oecologia.

[113]  M. Emmerson,et al.  Global change alters the stability of food webs , 2005 .

[114]  H. Rembold,et al.  Carbon-dioxide — highly attractive signal for larvae ofHelicoverpa armigera , 1994, Naturwissenschaften.

[115]  B. Hansson,et al.  Insect-Like Olfactory Adaptations in the Terrestrial Giant Robber Crab , 2005, Current Biology.

[116]  D. Campbell-Lendrum,et al.  Phlebotomine sandfly responses to carbon dioxide and human odour in the field , 2001, Medical and veterinary entomology.

[117]  M. Warnes,et al.  Responses of the sheep blowfly Lucilia sericata to carrion odour and carbon dioxide , 1994 .

[118]  A. Eiras,et al.  Responses of female Aedes aegypti (Diptera: Culicidae) to host odours and convection currents using an olfactometer bioassay , 1994 .

[119]  R. Lindroth,et al.  Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres , 2005 .

[120]  S. Schofield,et al.  Human individuals vary in attractiveness for host-seeking black flies (Diptera: Simuliidae) based on exhaled carbon dioxide. , 1996, Journal of medical entomology.

[121]  G. Stange High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera: Noctuidae) , 1992, Journal of Comparative Physiology A.

[122]  M. F. Bowen The sensory physiology of host-seeking behavior in mosquitoes. , 1991, Annual review of entomology.

[123]  V. Lacher Verhaltensreaktionen der Bienenarbeiterin bei Dressur auf Kohlendioxid , 2004, Zeitschrift für vergleichende Physiologie.