Benchmarking protocols for analog quantum simulators

Analog quantum simulation is expected to be a significant application of near-term quantum devices. Verification of these devices without comparison to known simulation results will be an important task as the system size grows beyond the regime that can be simulated classically. We introduce a set of experimentally-motivated benchmarking protocols for analog quantum simulators, discussing their sensitivity to a variety of error sources and their scalability to larger system sizes. We demonstrate these protocols experimentally via a two-site trapped-ion analog quantum simulator and numerically via a five-site Heisenberg model.

[1]  R A Jalabert,et al.  Environment-independent decoherence rate in classically chaotic systems. , 2001, Physical review letters.

[2]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[3]  E. Kashefi,et al.  Randomized benchmarking in the analogue setting , 2019, Quantum Science and Technology.

[4]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[5]  T. H. Johnson,et al.  What is a quantum simulator? , 2014, EPJ Quantum Technology.

[6]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[7]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[8]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[9]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[10]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[11]  M. Lewenstein,et al.  Can one trust quantum simulators? , 2011, Reports on progress in physics. Physical Society.

[12]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[13]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[14]  E Knill,et al.  Randomized benchmarking of multiqubit gates. , 2012, Physical review letters.

[15]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[16]  Ivan H. Deutsch,et al.  Small, Highly Accurate Quantum Processor for Intermediate-Depth Quantum Simulations. , 2020, Physical review letters.

[17]  M. Veldhorst,et al.  Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.

[18]  Michael J. Biercuk,et al.  Effect of noise correlations on randomized benchmarking , 2015, 1504.05307.

[19]  Thomas H. Seligman,et al.  Dynamics of Loschmidt echoes and fidelity decay , 2006, quant-ph/0607050.

[20]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[21]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[22]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[23]  I. A. Calafell,et al.  Verification of independent quantum devices , 2019 .

[24]  R. Feynman Simulating physics with computers , 1999 .

[25]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[26]  Sarah Sheldon,et al.  Three-Qubit Randomized Benchmarking. , 2017, Physical review letters.

[27]  Robin Blume-Kohout,et al.  Direct Randomized Benchmarking for Multiqubit Devices. , 2018, Physical review letters.

[28]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[29]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[30]  Peter Zoller,et al.  Cross-Platform Verification of Intermediate Scale Quantum Devices. , 2020, Physical review letters.

[31]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[32]  Alexander Aiken,et al.  Stochastic superoptimization , 2012, ASPLOS '13.

[33]  John A Smolin,et al.  Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. , 2012, Physical review letters.

[34]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[35]  L. C. G. Govia,et al.  Bootstrapping quantum process tomography via a perturbative ansatz , 2019, Nature Communications.

[36]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[37]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[38]  P. Schindler,et al.  Engineering vibrationally-assisted energy transfer in a trapped-ion quantum simulator , 2017, 1709.04064.

[39]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[40]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[41]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[42]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.