Hybrid nanostructured Copper(II) phthalocyanine/TiO2 films with efficient photoelectrochemical performance

[1]  Shanxin Xiong,et al.  Assembly of Copper Phthalocyanine on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting , 2019, Front. Chem..

[2]  D. Cao,et al.  Vertical CoP Nanoarray Wrapped by N,P‐Doped Carbon for Hydrogen Evolution Reaction in Both Acidic and Alkaline Conditions , 2019, Advanced Energy Materials.

[3]  A. Naldoni,et al.  Radiative and Non-Radiative Recombination Pathways in Mixed-Phase TiO2 Nanotubes for PEC Water-Splitting , 2019, Catalysts.

[4]  P. Hsieh,et al.  TiO2 Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production. , 2019, ACS applied materials & interfaces.

[5]  Y. Hsu,et al.  TiO2-Au-Cu2O Photocathodes: Au-Mediated Z-Scheme Charge Transfer for Efficient Solar-Driven Photoelectrochemical Reduction , 2018, ACS Applied Nano Materials.

[6]  Z. Zou,et al.  Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes , 2018, Applied Catalysis B: Environmental.

[7]  Yueping Fang,et al.  Facile synthesis of interlocking g-C3N4/CdS photoanode for stable photoelectrochemical hydrogen production , 2018, Electrochimica Acta.

[8]  K. Yong,et al.  CdS/CdSe co-sensitized brookite H:TiO2 nanostructures: Charge carrier dynamics and photoelectrochemical hydrogen generation , 2018, Applied Catalysis B: Environmental.

[9]  J. Zou,et al.  2D Porous TiO2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance , 2018, Advanced materials.

[10]  I. Parkin,et al.  High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD , 2018 .

[11]  M. Niinomi,et al.  Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. , 2018, ACS applied materials & interfaces.

[12]  H. Tian,et al.  Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode. , 2018, Angewandte Chemie.

[13]  J. Tu,et al.  Hollow TiO2@Co9S8 Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production , 2017, Advanced science.

[14]  G. Plesch,et al.  Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode , 2017 .

[15]  M. Sone,et al.  The hydrobaric effect on cathodically deposited titanium dioxide photocatalyst , 2017 .

[16]  D. Sannino,et al.  Photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances , 2017 .

[17]  J. Kullgren,et al.  Water splitting and the band edge positions of TiO2 , 2016 .

[18]  Liejin Guo,et al.  Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting , 2016, Nano Research.

[19]  Kiejin Lee,et al.  Effects of thermal preparation on Copper Phthalocyanine organic light emitting diodes , 2016 .

[20]  Zhi Zheng,et al.  A magnetically recyclable Fe3O4@C@TNCuPc composite catalyst for chromogenic identification of phenolic pollutants , 2015 .

[21]  Yuncheng Ge,et al.  Improving power conversion efficiency of polymer solar cells by doping copper phthalocyanine , 2015 .

[22]  S. Kang,et al.  Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/TiO2/Re(I) Organic-Inorganic Ternary Systems. , 2015, Journal of the American Chemical Society.

[23]  Sang Il Seok,et al.  Effective Electron Blocking of CuPC‐Doped Spiro‐OMeTAD for Highly Efficient Inorganic–Organic Hybrid Perovskite Solar Cells , 2015 .

[24]  Abhishek Kumar,et al.  Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature , 2015 .

[25]  S. Yoon,et al.  Photoelectrochemical solar water splitting using electrospun TiO2 nanofibers , 2015 .

[26]  Jihuai Wu,et al.  Electrolytes in dye-sensitized solar cells. , 2015, Chemical reviews.

[27]  Wensheng Yan,et al.  ZnO@S-doped ZnO core/shell nanocomposites for highly efficient solar water splitting , 2014 .

[28]  Yue Wang,et al.  A water-soluble metallophthalocyanine derivative as a cathode interlayer for highly efficient polymer solar cells , 2014 .

[29]  Kao-Der Chang,et al.  Surface Passivation of TiO2 Nanowires Using a Facile Precursor-Treatment Approach for Photoelectrochemical Water Oxidation , 2014 .

[30]  B. Liu,et al.  Electrochemical construction of hierarchically ordered CdSe-sensitized TiO2 nanotube arrays: towards versatile photoelectrochemical water splitting and photoredox applications. , 2014, Nanoscale.

[31]  Jian Shi,et al.  One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. , 2014, Chemical reviews.

[32]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[33]  M. Kimura,et al.  Extension of light-harvesting area of bulk-heterojunction solar cells by cosensitization with ring-expanded metallophthalocyanines fused with fluorene skeletons. , 2013, ACS applied materials & interfaces.

[34]  Thomas E Mallouk,et al.  Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. , 2013, Chemical Society reviews.

[35]  Y. Hsu,et al.  Interfacial charge carrier dynamics of type-II semiconductor nanoheterostructures , 2013 .

[36]  Ying-Chih Pu,et al.  Interfacial Charge Carrier Dynamics of the Three-Component In2O3–TiO2–Pt Heterojunction System , 2012 .

[37]  Katsuhiro Akimoto,et al.  Structural control of organic solar cells based on nonplanar metallophthalocyanine/C60 heterojunctions using organic buffer layers , 2011 .

[38]  Richard A. Klenkler,et al.  A simple parallel tandem organic solar cell based on metallophthalocyanines , 2011 .

[39]  Yichun Liu,et al.  Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. , 2011, ACS applied materials & interfaces.

[40]  Tebello Nyokong,et al.  Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions , 2010 .

[41]  Jian Li,et al.  Efficient Organic Solar Cells Based on Planar Metallophthalocyanines , 2009 .

[42]  Hongzheng Chen,et al.  High Photoconductive Vertically Oriented TiO2 Nanotube Arrays and Their Composites with Copper Phthalocyanine , 2008 .

[43]  V. Singh,et al.  Copper phthalocyanine based Schottky diode solar cells , 2007 .

[44]  Jun-Ho Yum,et al.  Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. , 2007, Angewandte Chemie.

[45]  M. L. Curri,et al.  Hybrid junctions of zinc(II) and magnesium(II) phthalocyanine with wide-band-gap semiconductor nano-oxides: spectroscopic and photoelectrochemical characterization. , 2006, The journal of physical chemistry. B.

[46]  M. Gray,et al.  Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting , 2006 .

[47]  Barry P Rand,et al.  The effects of copper phthalocyanine purity on organic solar cell performance , 2005 .

[48]  J. Bandara,et al.  Highly stable CuO incorporated TiO_2 catalyst for photocatalytic hydrogen production from H_2O , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[49]  H. Arakawa,et al.  Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation , 2002 .

[50]  Wei Huang,et al.  Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes , 2001 .

[51]  P. Gregory Industrial applications of phthalocyanines , 2000 .

[52]  A. Kahn,et al.  Band alignment at organic-inorganic semiconductor interfaces: α-NPD and CuPc on InP(110) , 1999 .

[53]  A. Pauly,et al.  Interaction of NO2 with copper phthalocyanine thin films. II: Application to gas sensing , 1992 .

[54]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[55]  David Dolphin,et al.  Porphyrins XVII. Vapor absorption spectra and redox reactions: Tetraphenylporphins and porphin , 1971 .

[56]  M. Gouterman,et al.  Porphyrins: XV. Vapor absorption spectra and stability: Phthalocyanines☆ , 1970 .

[57]  Yang Tian,et al.  Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation , 2019, Chemical Engineering Journal.

[58]  Y. Hsu,et al.  Au@Cu7S4 yolk@shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification , 2017 .

[59]  A. Altındal,et al.  Highly efficient dye-sensitized solar cells based on metal-free and copper(II) phthalocyanine bearing 2-phenylphenoxy moiety , 2016 .

[60]  Xiaojiao Du,et al.  Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. , 2015, Analytica chimica acta.

[61]  Linhua Hu,et al.  CdS and CdSe quantum dot co-sensitized nanocrystalline TiO2 electrode: Quantum dot distribution, thickness optimization, and the enhanced photovoltaic performance , 2015 .

[62]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .