Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands

[1]  J. Xie,et al.  Shining photocatalysis by gold-based nanomaterials , 2021 .

[2]  C. Tung,et al.  Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. , 2021, ACS nano.

[3]  Baoyu Huang,et al.  Unraveling the Nucleation Process from a Au(I)-SR Complex to Transition-Size Nanoclusters. , 2021, Journal of the American Chemical Society.

[4]  Xi-Yan Dong,et al.  Circularly polarized luminescence of agglomerate emitters , 2021, Aggregate.

[5]  Dan Li,et al.  Phosphorescent Metal Rotaxane-like Bimetallic Ag/Au Clusters , 2021 .

[6]  Xing Lu,et al.  Construction of Silver Clusters Capped by Zwitterionic Ethynide Ligands. , 2021, Inorganic chemistry.

[7]  Xi-Yan Dong,et al.  Alkynyl-Stabilized Superatomic Silver Clusters Showing Circularly Polarized Luminescence. , 2021, Journal of the American Chemical Society.

[8]  Quan‐Ming Wang,et al.  Chiral Superatomic Nanoclusters Ag47 Induced by the Ligation of Amino Acids. , 2021, Angewandte Chemie.

[9]  Zhennan Wu,et al.  Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications , 2021, Aggregate.

[10]  Shuangquan Zang,et al.  Carboranealkynyl-Protected Gold Nanoclusters: Size Conversion and UV-Vis-NIR Optical Properties. , 2020, Angewandte Chemie.

[11]  Zhong-Ning Chen,et al.  Elaborate Design of Ag8Au10 Cluster [2]Catenane Phosphors for High-Efficiency Light-Emitting Devices. , 2020, ACS applied materials & interfaces.

[12]  H. Häkkinen,et al.  A Homoleptic Alkynyl-Ligated [Au13Ag16L24]3- Cluster as a Catalytically Active Eight-Electron Superatom. , 2020, Angewandte Chemie.

[13]  Yubing Si,et al.  Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework , 2020, Nature Communications.

[14]  R. Jin,et al.  Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters , 2020, Advanced materials.

[15]  C. Tung,et al.  Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4]0 Kernel. , 2020, Journal of the American Chemical Society.

[16]  Shuangquan Zang,et al.  Progress in Atomically Precise Coinage Metal Clusters with Aggregation‐Induced Emission and Circularly Polarized Luminescence , 2020, Advanced Optical Materials.

[17]  Xian‐Ming Zhang,et al.  Observation of non-FCC Copper in Alkynyl-Protected Cu53 Nanoclusters. , 2020, Angewandte Chemie.

[18]  C. Tung,et al.  A hierarchically assembled 88-nuclei silver-thiacalix[4]arene nanocluster , 2020, Nature Communications.

[19]  Xi-Yan Dong,et al.  AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. , 2019, Angewandte Chemie.

[20]  Yuanxin Du,et al.  Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. , 2020, Chemical reviews.

[21]  Jiao-Jiao Li,et al.  Total Structure Determination of Alkynyl-Protected Gold Nanocluster Au22(tBuC≡C)18 and the Thermochromic Luminescence. , 2019, Angewandte Chemie.

[22]  N. Khashab,et al.  Pillar[5]arene Stabilized Silver Nanoclusters: Immense Stability and Luminescence Enhancement Induced by Host-Guest Interactions. , 2019, Angewandte Chemie.

[23]  T. Tsukuda,et al.  Alkynyl-Protected Au22(C≡CR)18 Clusters Featuring New Interfacial Motifs and R-Dependent Photoluminescence. , 2019, The journal of physical chemistry letters.

[24]  Xi-Yan Dong,et al.  Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. , 2019, Angewandte Chemie.

[25]  R. Jin,et al.  Atomically Precise Metal Nanoclusters for Catalysis. , 2019, ACS nano.

[26]  Xiaoyuan Chen,et al.  An Atomically Precise Gold-Levonorgestrel Nanocluster as a Radiosensitizer for Enhanced Cancer Therapy. , 2019, ACS nano.

[27]  R. Jin,et al.  Luminescent metal nanoclusters for biomedical applications , 2019, Nano Research.

[28]  N. Zheng,et al.  Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions , 2019, ACS nano.

[29]  Douglas R. Kauffman,et al.  A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure-Property Correlation. , 2019, Journal of the American Chemical Society.

[30]  C. Tung,et al.  [Ag48(C≡C tBu)20(CrO4)7]: An Atomically Precise Silver Nanocluster Co-protected by Inorganic and Organic Ligands. , 2019, Journal of the American Chemical Society.

[31]  J. Millstone,et al.  Surface Chemistry-Mediated Near-Infrared Emission of Small Coinage Metal Nanoparticles. , 2019, Accounts of chemical research.

[32]  R. Haiges,et al.  Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime , 2019, Science.

[33]  M. Asay,et al.  Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. , 2019, Chemical reviews.

[34]  Jiao-Jiao Li,et al.  Same Magic Number but Different Arrangement: Alkynyl-Protected Au25 with D3 Symmetry. , 2019, Angewandte Chemie.

[35]  Quan‐Ming Wang,et al.  Chiroptical Activity Enhancement via Structural Control: The Chiral Synthesis and Reversible Interconversion of Two Intrinsically Chiral Gold Nanoclusters. , 2019, Journal of the American Chemical Society.

[36]  Manzhou Zhu,et al.  The photoluminescent metal nanoclusters with atomic precision , 2017, Coordination Chemistry Reviews.

[37]  O. Bakr,et al.  Atomic-Level Doping of Metal Clusters. , 2018, Accounts of chemical research.

[38]  N. Zheng,et al.  Surface Chemistry of Atomically Precise Coinage-Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. , 2018, Accounts of chemical research.

[39]  Yukatsu Shichibu,et al.  Phosphine-Ligated Gold Clusters with Core+ exo Geometries: Unique Properties and Interactions at the Ligand-Cluster Interface. , 2018, Accounts of chemical research.

[40]  T. Bürgi,et al.  Vibrational Properties of Thiolate-Protected Gold Nanoclusters. , 2018, Accounts of chemical research.

[41]  Zhikun Wu,et al.  Discovery, Mechanism, and Application of Antigalvanic Reaction. , 2018, Accounts of chemical research.

[42]  Quan‐Ming Wang,et al.  Alkynyl Approach toward the Protection of Metal Nanoclusters. , 2018, Accounts of chemical research.

[43]  R. Jin,et al.  Unraveling the long-pursued Au144 structure by x-ray crystallography , 2018, Science Advances.

[44]  Andrew W Cook,et al.  Case Studies in Nanocluster Synthesis and Characterization: Challenges and Opportunities. , 2018, Accounts of chemical research.

[45]  D. Leong,et al.  Engineering Functional Metal Materials at the Atomic Level , 2018, Advanced materials.

[46]  B. le Guennic,et al.  Adaptive Coordination-Driven Supramolecular Syntheses toward New Polymetallic Cu(I) Luminescent Assemblies. , 2018, Journal of the American Chemical Society.

[47]  Yukatsu Shichibu,et al.  An Inherently Chiral Au24 Framework with Double-Helical Hexagold Strands. , 2018, Angewandte Chemie.

[48]  Jiao-Jiao Li,et al.  Isolation and Total Structure Determination of an All-Alkynyl-Protected Gold Nanocluster Au144. , 2018, Angewandte Chemie.

[49]  A. Gupta,et al.  Alkynyl Coinage Metal Clusters and Complexes-Syntheses, Structures, and Strategies. , 2018, Chemistry.

[50]  J. Xie,et al.  Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. , 2018, Accounts of chemical research.

[51]  Xing Lu,et al.  High-Nuclearity Heterometallic tert-Butylethynide Clusters Assembled with tert-Butylphosphonate. , 2018, Chemistry.

[52]  N. Zheng,et al.  From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13 Cu2 Nanoclusters. , 2018, Angewandte Chemie.

[53]  M. Chiang,et al.  Synthesis of Two-Electron Bimetallic Cu-Ag and Cu-Au Clusters by using [Cu13 (S2 CNn Bu2 )6 (C≡CPh)4 ]+ as a Template. , 2018, Chemistry, an Asian journal.

[54]  C. Tung,et al.  Elimination-Fusion Self-Assembly of a Nanometer-Scale 72-Nucleus Silver Cluster Caging a Pair of [EuW10 O36 ]9- Polyoxometalates. , 2018, Chemistry.

[55]  Guang Wu,et al.  An Organometallic Cu20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and "Click" Chemistry. , 2018, Journal of the American Chemical Society.

[56]  S. Bräse,et al.  Sustainable metal complexes for organic light-emitting diodes (OLEDs) , 2017, Coordination Chemistry Reviews.

[57]  T. Mak,et al.  Temperature-Mediated Template Release: Facile Growth of Copper(I) Mixed Ethynediide/Isopropylethynide Nanoclusters. , 2017, Angewandte Chemie.

[58]  K. Nozaki,et al.  Aggregation-Induced Fluorescence-to-Phosphorescence Switching of Molecular Gold Clusters. , 2017, Journal of the American Chemical Society.

[59]  Quan‐Ming Wang,et al.  Ligand effects in catalysis by atomically precise gold nanoclusters , 2017, Science Advances.

[60]  Quan‐Ming Wang,et al.  Homoleptic Alkynyl-Protected Gold Nanoclusters: Au44 (PhC≡C)28 and Au36 (PhC≡C)24. , 2017, Angewandte Chemie.

[61]  Jun-Hao Wang,et al.  Bidentate Phosphine-Assisted Synthesis of an All-Alkynyl-Protected Ag74 Nanocluster. , 2017, Journal of the American Chemical Society.

[62]  R. Renner,et al.  Silver(I) Clusters with Carba-closo-dodecaboranylethynyl Ligands: Synthesis, Structure, and Phosphorescence. , 2017, Chemistry.

[63]  Qing Tang,et al.  Atomically Precise Bimetallic Au19Cu30 Nanocluster with an Icosidodecahedral Cu30 Shell and an Alkynyl-Cu Interface. , 2017, Journal of the American Chemical Society.

[64]  R. Jin,et al.  Chiral Gold Nanoclusters: Atomic Level Origins of Chirality. , 2017, Chemistry, an Asian journal.

[65]  T. Pradeep,et al.  Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. , 2017, Chemical reviews.

[66]  C. Tung,et al.  Anion-Templated Nanosized Silver Alkynyl Clusters: Cluster Engineering and Solution Behavior. , 2017, Chemistry.

[67]  Xi-Yan Dong,et al.  Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. , 2017, Nature chemistry.

[68]  R. Czerwieniec,et al.  Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough , 2017 .

[69]  A. Kobayashi,et al.  Stimuli-responsive Luminescent Copper(I) Complexes for Intelligent Emissive Devices , 2017 .

[70]  Pengxin Liu,et al.  Surface Coordination Chemistry of Metal Nanomaterials. , 2017, Journal of the American Chemical Society.

[71]  Xing Lu,et al.  High-nuclearity silver(I) chalcogenide clusters: A novel class of supramolecular assembly , 2017 .

[72]  C. Tung,et al.  High-Nuclear Organometallic Copper(I)-Alkynide Clusters: Thermochromic Near-Infrared Luminescence and Solution Stability. , 2016, Chemistry.

[73]  N. Zheng,et al.  Site Preference in Multimetallic Nanoclusters: Incorporation of Alkali Metal Ions or Copper Atoms into the Alkynyl-Protected Body-Centered Cubic Cluster [Au7 Ag8 (C≡Ct Bu)12 ]. , 2016, Angewandte Chemie.

[74]  M. Chiang,et al.  [Cu13 {S2 CNn Bu2 }6 (acetylide)4 ]+ : A Two-Electron Superatom. , 2016, Angewandte Chemie.

[75]  Herbert H. H. Homeier,et al.  Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design , 2016 .

[76]  Yukatsu Shichibu,et al.  Ligand-Based Toolboxes for Tuning of the Optical Properties of Subnanometer Gold Clusters. , 2016, The journal of physical chemistry letters.

[77]  T. Mak,et al.  Assembly of Heterometallic Silver(I)-Copper(I) Alkyl-1,3-diynyl Clusters via Inner-Core Expansion. , 2016, Journal of the American Chemical Society.

[78]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[79]  Guanggang Gao,et al.  A Silver(I)-Estrogen Nanocluster: GSH Sensitivity and Targeting Suppression on HepG2 Cell. , 2016, Small.

[80]  R. Renner,et al.  Unprecedented Efficient Structure Controlled Phosphorescence of Silver(I) Clusters Stabilized by Carba-closo-dodecaboranylethynyl Ligands. , 2016, Angewandte Chemie.

[81]  C. Che,et al.  From Cluster to Polymer: Ligand Cone Angle Controlled Syntheses and Structures of Copper(I) Alkynyl Complexes. , 2016, Angewandte Chemie.

[82]  Y. Negishi,et al.  Precise synthesis, functionalization and application of thiolate-protected gold clusters , 2016 .

[83]  Quan‐Ming Wang,et al.  An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission. , 2016, Chemistry.

[84]  Quan‐Ming Wang,et al.  [Mn(III)Mn(IV)2Mo14O56](17-): A Mixed-Valence Meso-Polyoxometalate Anion Encapsulated by a 64-Nuclearity Silver Cluster. , 2016, Inorganic chemistry.

[85]  Quan‐Ming Wang,et al.  Chloride-Promoted Formation of a Bimetallic Nanocluster Au80Ag30 and the Total Structure Determination. , 2016, Journal of the American Chemical Society.

[86]  Terence K.-M. Lee,et al.  Thermodynamic-Driven Self-Assembly: Heterochiral Self-Sorting and Structural Reconfiguration in Gold(I)-Sulfido Cluster System. , 2016, Journal of the American Chemical Society.

[87]  Hong Jiang,et al.  Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response. , 2016, Journal of the American Chemical Society.

[88]  N. Zheng,et al.  Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles. , 2016, Journal of the American Chemical Society.

[89]  T. Mak,et al.  Comproportionation Synthesis of Copper(I) Alkynyl Complexes Encapsulating Polyoxomolybdate Templates: Bowl-Shaped Cu33 and Peanut-Shaped Cu62 Nanoclusters. , 2016, Journal of the American Chemical Society.

[90]  I. Samuel,et al.  Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state , 2016, Science Advances.

[91]  R. Whetten,et al.  Geometric Quantification of Chirality in Ligand-Protected Metal Clusters , 2015 .

[92]  X. Zeng,et al.  A Near-Infrared-Emissive Alkynyl-Protected Au24 Nanocluster. , 2015, Angewandte Chemie.

[93]  Vonika Ka-Man Au,et al.  Light-Emitting Self-Assembled Materials Based on d(8) and d(10) Transition Metal Complexes. , 2015, Chemical reviews.

[94]  Qing Tang,et al.  Insights into the PhC≡C/Au Interface , 2015 .

[95]  Quan‐Ming Wang,et al.  Role of Anions Associated with the Formation and Properties of Silver Clusters. , 2015, Accounts of chemical research.

[96]  Qing Tang,et al.  Alkynyl-protected Au23 nanocluster: a 12-electron system. , 2015, Angewandte Chemie.

[97]  Liang Xu,et al.  Phosphorescent Cationic Au4Ag2 Alkynyl Cluster Complexes for Efficient Solution‐Processed Organic Light‐Emitting Diodes , 2015 .

[98]  H. Häkkinen,et al.  The Role of the Anchor Atom in the Ligand of the Monolayer-Protected Au25(XR)18– Nanocluster , 2015 .

[99]  N. Zheng,et al.  An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. , 2015, Journal of the American Chemical Society.

[100]  Xianqiong Tang,et al.  New Structure Model of Au22(SR)18: Bitetrahederon Golden Kernel Enclosed by [Au6(SR)6] Au(I) Complex. , 2015, The journal of physical chemistry letters.

[101]  Guonan Chen,et al.  Luminescent Ag6Au6 heterometallic ethisterone cluster and probe for estrogen receptor α. , 2015, Chemistry.

[102]  Hee Young Byun,et al.  Structure determination of [Au18(SR)14]. , 2015, Angewandte Chemie.

[103]  P. Chou,et al.  Tetragold(I) complexes: solution isomerization and tunable solid-state luminescence. , 2014, Inorganic chemistry.

[104]  R. Jin,et al.  Gold nanocluster-catalyzed semihydrogenation: a unique activation pathway for terminal alkynes. , 2014, Journal of the American Chemical Society.

[105]  K. Koyasu,et al.  Nonscalable oxidation catalysis of gold clusters. , 2014, Accounts of chemical research.

[106]  T. Verbiest,et al.  Chiral phase transfer and enantioenrichment of thiolate-protected Au₁₀₂ clusters. , 2014, Journal of the American Chemical Society.

[107]  T. Bürgi,et al.  Chirality in thiolate-protected gold clusters. , 2014, Accounts of chemical research.

[108]  Quan‐Ming Wang,et al.  [Ag(70)(PW(9)O(34))(2)((t)BuC[triple bond, length as m-dash]C)(44)(H(2)O)(2)](8+): ionothermal synthesis of a silver cluster encapsulating lacunary polyoxometalate ions. , 2014, Chemical communications.

[109]  Yutaro Kamei,et al.  Protonation-induced chromism of pyridylethynyl-appended [core+exo]-type Au8 clusters. Resonance-coupled electronic perturbation through π-conjugated group. , 2013, Journal of the American Chemical Society.

[110]  Zhong-Ning Chen,et al.  Structures and Phosphorescence Properties of Triphosphine-Supported Au2Ag2 and Au8Ag4 Alkynyl Cluster Complexes , 2013 .

[111]  T. Tsukuda,et al.  Binding motif of terminal alkynes on gold clusters. , 2013, Journal of the American Chemical Society.

[112]  J. Xie,et al.  Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. , 2013, The journal of physical chemistry letters.

[113]  P. Chou,et al.  Solid-state luminescence of Au-Cu-alkynyl complexes induced by metallophilicity-driven aggregation. , 2013, Chemistry.

[114]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[115]  A. Jakob,et al.  Copper(I) Alkyne and Alkynide Complexes , 2012 .

[116]  T. Mak,et al.  High-nuclearity silver ethynide clusters assembled with phosphonate and metavanadate precursors. , 2012, Angewandte Chemie.

[117]  T. Ahuja,et al.  Near infrared luminescence of gold nanoclusters affected by the bonding of 1,4-dithiolate durene and monothiolate phenylethanethiolate. , 2012, Nanoscale.

[118]  S. Xie,et al.  Selective synthesis of organogold magic clusters Au54(C≡CPh)26. , 2012, Chemical communications.

[119]  P. Chou,et al.  Modulation of metallophilic bonds: solvent-induced isomerization and luminescence vapochromism of a polymorphic Au-Cu cluster. , 2012, Journal of the American Chemical Society.

[120]  T. Mak,et al.  Enlargement of globular silver alkynide cluster via core transformation. , 2012, Journal of the American Chemical Society.

[121]  Zhong-Ning Chen,et al.  Structural Characterization and Luminescence Properties of a Triphosphine-Stabilized Ag16Cu9 Heterometallic Alkynyl Cluster , 2012 .

[122]  S. Xie,et al.  Organogold clusters protected by phenylacetylene. , 2011, Journal of the American Chemical Society.

[123]  J. C. Lima,et al.  Applications of gold(I) alkynyl systems: a growing field to explore. , 2011, Chemical Society reviews.

[124]  V. Yam,et al.  Design and synthesis of luminescence chemosensors based on alkynyl phosphine gold(I)-copper(I) aggregates. , 2011, Dalton transactions.

[125]  M. Finze,et al.  Tetrahedral gold(I) clusters with carba-closo-dodecaboranylethynido ligands: [{12-(R3PAu)2C≡C-closo-1-CB11H11}2]. , 2011, Angewandte Chemie.

[126]  H. Lang,et al.  Homoleptic transition metal acetylides , 2011 .

[127]  Kathleen A. Durkin,et al.  A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. , 2010, Nature chemistry.

[128]  T. Pakkanen,et al.  Halide-directed assembly of multicomponent systems: highly ordered Au(I)-Ag(I) molecular aggregates. , 2010, Angewandte Chemie.

[129]  Kemin Wang,et al.  Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. , 2010, Nanoscale.

[130]  Robert A. Stockland,et al.  Luminescent Au(I)/Cu(I) alkynyl clusters with an ethynyl steroid and related aliphatic ligands: an octanuclear Au4Cu4 cluster and luminescence polymorphism in Au3Cu2 clusters. , 2010, Journal of the American Chemical Society.

[131]  M. Jansen,et al.  {[Ag42(CO3)(C[triple bond]CtBu)27(CH3CN)2][CoW12O40]2}[BF4]: an intercluster sandwich compound. , 2010, Angewandte Chemie.

[132]  M. Jevric,et al.  Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2] , 2010 .

[133]  J. Qiao,et al.  A giant silver alkynyl cage with sixty silver(I) ions clustered around polyoxometalate templates. , 2010, Angewandte Chemie.

[134]  P. Chou,et al.  Rational reductive fusion of two heterometallic clusters: formation of a highly stable, intensely phosphorescent Au-Ag aggregate and application in two-photon imaging in human mesenchymal stem cells. , 2010, Chemical communications.

[135]  P. Chou,et al.  Synthesis, photophysical and theoretical studies of luminescent silver(I)-copper(I) alkynyl-diphosphine complexes. , 2010, Dalton transactions.

[136]  Quan‐Ming Wang,et al.  A facile template approach to high-nuclearity silver(I) alkynyl clusters. , 2009, Angewandte Chemie.

[137]  Quan‐Ming Wang,et al.  High-nuclearity silver clusters templated by carbonates generated from atmospheric carbon dioxide fixation. , 2009, Journal of the American Chemical Society.

[138]  Quan‐Ming Wang,et al.  Snowman-like silver alkynyl cluster consolidated by templating chloride and peripheral trifluoroacetates. , 2008, Chemical communications.

[139]  G. Guo,et al.  Synthesis and structural characterization of silver(I) double and multiple salts containing the acetylenediide dianion , 2007 .

[140]  Nianyong Zhu,et al.  Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown‐6 Complexes with Planar η2,η2‐Coordinated Gold(I) Centers , 2004 .

[141]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[142]  Anita C Jones,et al.  Luminescent high nuclearity Cu(I)-alkynyl clusters, [Cu16(hfac)8(3,3-dimethyl-1-butynyl)8] and [Cu20(hfac)8(3-phenyl-1-propynyl)12] , 2002 .

[143]  V. Yam Molecular design of transition metal alkynyl complexes as building blocks for luminescent metal-based materials: structural and photophysical aspects. , 2002, Accounts of chemical research.

[144]  J. Vittal,et al.  Syntheses, Structures, and Electrochemistry of Polynuclear CuI, AgI, and PtII Complexes Bearing Ferrocenyl Group , 2002 .