An O(n) Time Algorithm for Maximum Matching in P4-Tidy Graphs

Abstract The P 4 -tidy graphs were introduced by I. Rusu to generalize some already known classes of graphs with “few” induced P 4 s. In this paper, we extend to P 4 -tidy graphs a linear time algorithm of C.-H. Yang and M.-S. Yu for finding a maximum matching in a cograph G (given a parse tree associated to G ).

[1]  Vijay V. Vazirani,et al.  A theory of alternating paths and blossoms for proving correctness of the $$O(\sqrt V E)$$ general graph maximum matching algorithm , 1990, Comb..

[2]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[3]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[5]  S. Olariu,et al.  A New Class of Brittle Graphs , 1989 .

[6]  Stephan Olariu,et al.  An Optimal Parallel Matching Algorithm for Cographs , 1994, J. Parallel Distributed Comput..

[7]  S. Olariu,et al.  On a unique tree representation for P4-extendible graphs , 1991, Discret. Appl. Math..

[8]  Vassilis Giakoumakis,et al.  On P 4 -tidy graphs , 1997 .

[9]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[10]  Cheng-Hsing Yang,et al.  An O(n) Time Algorithm for Maximum Matching on Cographs , 1993, Inf. Process. Lett..

[11]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[12]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .