20 Years After

In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [113]. Subsequently, the format of SOS rules became the object of study. Using so-called Transition System Specifications (TSS’s) several authors syntactically restricted the format of rules and showed several useful properties about the semantics induced by any TSS adhering to the format. This has resulted in a line of research proposing several syntactical rule formats and associated meta-theorems. Properties that are guaranteed by such rule formats range from well-definedness of the operational semantics and compositionality of behavioral equivalences to security-, time- and probability-related issues. In this paper, we provide an overview of SOS rule formats and meta-theorems formulated around them.

[1]  Mohammad Reza Mousavi,et al.  On Well-Foundedness and Expressiveness of Promoted Tyft: Being Promoted Makes a Difference , 2007, Electron. Notes Theor. Comput. Sci..

[2]  Karen L. Bernstein A congruence theorem for structured operational semantics of higher-order languages , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[3]  Andrew C. Myers,et al.  Language-based information-flow security , 2003, IEEE J. Sel. Areas Commun..

[4]  Erik P. de Vink,et al.  A hierarchy of probabilistic system types , 2003, CMCS.

[5]  Dale Miller,et al.  A proof theory for generic judgments , 2005, TOCL.

[6]  Peter D. Mosses Exploiting labels in Structural Operational Semantics , 2004, SAC '04.

[7]  Jcm Jos Baeten,et al.  Processen en procesexpressies , 1987 .

[8]  Iain C. C. Phillips,et al.  Formats of Ordered SOS Rules with Silent Actions , 1997, TAPSOFT.

[9]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[10]  Paul Klint,et al.  Compiling language definitions: the ASF+SDF compiler , 2000, TOPL.

[11]  Wan Fokkink,et al.  Rooted Branching Bisimulation as a Congruence , 2000, J. Comput. Syst. Sci..

[12]  Kees Middelburg,et al.  Variable binding operators in transition system specifications , 2000, J. Log. Algebraic Methods Program..

[13]  Elham Morcos-Chounet,et al.  PPML: A General Formalism to Specify PrettyPrinting , 1986, IFIP Congress.

[14]  Jan Friso Groote,et al.  Transition System Specifications with Negative Premises , 1993, Theor. Comput. Sci..

[15]  Robin Milner,et al.  A Modal Characterisation of Observable Machine-Behaviour , 1981, CAAP.

[16]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[17]  Frits W. Vaandrager,et al.  Turning SOS Rules into Equations , 1994, Inf. Comput..

[18]  Karl-Heinz Buth,et al.  Simulation of SOS Definitions with Term Rewriting Systems , 1994, ESOP.

[19]  Matthew Hennessy,et al.  Full Abstraction for a Simple Parallel Programming Language , 1979, MFCS.

[20]  Wan Fokkink,et al.  Precongruence formats for decorated trace semantics , 2002, TOCL.

[21]  Irek Ulidowski,et al.  Process languages with discrete relative time based on the Ordered SOS format and rooted eager bisimulation , 2004, J. Log. Algebraic Methods Program..

[22]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[23]  C. A. R. Hoare,et al.  Communicating Sequential Processes (Reprint) , 1983, Commun. ACM.

[24]  José Meseguer,et al.  Modular Rewriting Semantics of Programming Languages , 2004, AMAST.

[25]  Erik P. de Vink,et al.  Axiomatizing GSOS with termination , 2002, J. Log. Algebraic Methods Program..

[26]  Alberto Verdejo,et al.  Implementing CCS in Maude , 2000, FORTE.

[27]  S. P. Luttik Choice quantification in process algebra , 2002 .

[28]  J. Meseguer,et al.  Rewriting Logic as a Logical and Semantic Framework , 1996 .

[29]  Stephen J. Garland,et al.  Larch: Languages and Tools for Formal Specification , 1993, Texts and Monographs in Computer Science.

[30]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[31]  Sam Staton,et al.  A Congruence Rule Format for Name-Passing Process Calculi from Mathematical Structural Operational Semantics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[32]  Luca Aceto,et al.  CPO Models for Compact GSOS Languages , 1996, Inf. Comput..

[33]  Joseph Sifakis,et al.  The Algebra of Timed Processes, ATP: Theory and Application , 1994, Inf. Comput..

[34]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[35]  David Sands From SOS rules to proof principles: an operational metatheory for functional languages , 1997, POPL '97.

[36]  Irek Ulidowski,et al.  Finite axiom systems for testing preorder and De Simone process languages , 1996, Theor. Comput. Sci..

[37]  Wan Fokkink,et al.  Divide and Congruence Applied to eta-Bisimulation , 2006, SOS@ICALP.

[38]  Alberto Verdejo,et al.  Two Case Studies of Semantics Execution in Maude: CCS and LOTOS , 2005, Formal Methods Syst. Des..

[39]  Jos C. M. Baeten,et al.  Merge and Termination in Process Algebra , 1987, FSTTCS.

[40]  Marco Kick,et al.  Bialgebraic Modelling of Timed Processes , 2002, ICALP.

[41]  Mohammad Reza Mousavi,et al.  Orthogonal Extensions in Structural Operational Semantics , 2005, ICALP.

[42]  K. Larsen Context-dependent bisimulation between processes , 1986 .

[43]  Davide Sangiorgi,et al.  Bisimulation for Higher-Order Process Calculi , 1994, Inf. Comput..

[44]  Rance Cleaveland,et al.  A Front-End Generator for Verification Tools , 1995, TACAS.

[45]  Bent Thomsen A Theory of Higher Order Communicating Systems , 1995, Inf. Comput..

[46]  Peter D. Mosses,et al.  Modular structural operational semantics , 2004, J. Log. Algebraic Methods Program..

[47]  Douglas J. Howe Proving Congruence of Bisimulation in Functional Programming Languages , 1996, Inf. Comput..

[48]  Jan Friso Groote,et al.  The meaning of negative premises in transition system specifications , 1991, JACM.

[49]  D. Turi,et al.  Functional Operational Semantics and its Denotational Dual , 1996 .

[50]  Faron Moller,et al.  A Temporal Calculus of Communicating Systems , 1990, CONCUR.

[51]  Robert de Simone,et al.  Process Calculi, from Theory to Practice: Verification Tools , 1989, Automatic Verification Methods for Finite State Systems.

[52]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[53]  Corrado Priami,et al.  Enhanced operational semantics: a tool for describing and analyzing concurrent systems , 2001, CSUR.

[54]  Jan A. Bergstra,et al.  Verification of an alternating bit protocol by means of process algebra , 1985, Mathematical Methods of Specification and Synthesis of Software Systems.

[55]  José Meseguer,et al.  Maude Action Tool: Using Reflection to Map Action Semantics to Rewriting Logic , 2000, AMAST.

[56]  Alberto Verdejo,et al.  Building Tools for LOTOS Symbolic Semantics in Maude , 2002, FORTE.

[57]  Rob van Glabbeek On Cool Congruence Formats for Weak Bisimulations (Extended Abstract) , 2005 .

[58]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[59]  Gilles Kahn,et al.  Natural Semantics , 1987, STACS.

[60]  Jan A. Bergstra,et al.  Real time process algebra , 1991, Formal Aspects of Computing.

[61]  Mohammad Reza Mousavi,et al.  Congruence for Structural Congruences , 2005, FoSSaCS.

[62]  Gérard Boudol Towards a Lambda-Calculus for Concurrent and Communicating Systems , 1989, TAPSOFT, Vol.1.

[63]  Luca Aceto,et al.  Conservative Extension in Structural Operational Semantics , 1999, Bull. EATCS.

[64]  Jan Friso Groote,et al.  Structured Operational Semantics and Bisimulation as a Congruence , 1992, Inf. Comput..

[65]  Alex K. Simpson,et al.  Sequent calculi for process verification: Hennessy-Milner logic for an arbitrary GSOS , 2004, J. Log. Algebraic Methods Program..

[66]  Chris Verhoef,et al.  A General Conservative Extension Theorem in Process Algebra , 1994, PROCOMET.

[67]  Rob J. van Glabbeek Full Abstraction in Structural Operational Semantics (Extended Abstract) , 1993, AMAST.

[68]  Chris Verhoef,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates and Negative Premises , 1994, Nord. J. Comput..

[69]  José Meseguer,et al.  Mapping Modular SOS to Rewriting Logic , 2002, LOPSTR.

[70]  Joachim Parrow The expressive power of parallelism , 1990, Future Gener. Comput. Syst..

[71]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[72]  Irek Ulidowski,et al.  Equivalences on observable processes , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[73]  Mohammad Reza Mousavi,et al.  Prototyping SOS Meta-theory in Maude , 2006, Electron. Notes Theor. Comput. Sci..

[74]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[75]  Teodor C. Przymusinski The Well-Founded Semantics Coincides with the Three-Valued Stable Semantics , 1990, Fundam. Inform..

[76]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[77]  Iain C. C. Phillips,et al.  The Meaning of Ordered SOS , 2006, FSTTCS.

[78]  Rance Cleaveland,et al.  The concurrency workbench: a semantics-based tool for the verification of concurrent systems , 1993, TOPL.

[79]  Simone Tini,et al.  Rule Formats for Non Interference , 2003, ESOP.

[80]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[81]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[82]  Iain C. C. Phillips,et al.  Reversing algebraic process calculi , 2006, J. Log. Algebraic Methods Program..

[83]  Jeff W. Sanders,et al.  Quantum Programming , 2000, MPC.

[84]  Rob J. van Glabbeek,et al.  Bounded Nondeterminism and the Approximation Induction Principle in Process Algebra , 1987, STACS.

[85]  Bard Bloom,et al.  Structural Operational Semantics for Weak Bisimulations , 1995, Theor. Comput. Sci..

[86]  Jan Friso Groote,et al.  Notions of bisimulation and congruence formats for SOS with data , 2005, Inf. Comput..

[87]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[88]  Luca Aceto,et al.  Deriving Complete Inference Systems for a Class of GSOS Languages Generation Regular Behaviours , 1994, CONCUR.

[89]  Wan Fokkink,et al.  Structural operational semantics and bounded nondeterminism , 2003, Acta Informatica.

[90]  Fabio Gadducci,et al.  A causal semantics for CCS via rewriting logic , 2002, Theor. Comput. Sci..

[91]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[92]  Gianna Reggio,et al.  Generalized Bisimulation in Relational Specifications , 1988, STACS.

[93]  Wan Fokkink The Tyft/Tyxt Format Reduces to Tree Rules , 1994, TACS.

[94]  Reiko Heckel,et al.  Compositional SOS and beyond: a coalgebraic view of open systems , 2002, Theor. Comput. Sci..

[95]  Gordon D. Plotkin,et al.  The origins of structural operational semantics , 2004, J. Log. Algebraic Methods Program..

[96]  Alberto Verdejo,et al.  Implementing CCS in Maude 2 , 2002, Electron. Notes Theor. Comput. Sci..

[97]  Erik P. de Vink,et al.  Probabilistic Automata: System Types, Parallel Composition and Comparison , 2004, Validation of Stochastic Systems.

[98]  Vashti Galpin,et al.  A format for semantic equivalence comparison , 2003, Theor. Comput. Sci..

[99]  Rob J. van Glabbeek The meaning of negative premises in transition system specifications II , 2004, J. Log. Algebraic Methods Program..

[100]  Simone Tini,et al.  Rule formats for compositional non-interference properties , 2004, J. Log. Algebraic Methods Program..

[101]  José Meseguer,et al.  Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..

[102]  Bartek Klin,et al.  From Bialgebraic Semantics to Congruence Formats , 2005, SOS@CONCUR.

[103]  Matthew Hennessy,et al.  The Power of the Future Perfect in Program Logics , 1985, Inf. Control..

[104]  Pieter H. Hartel,et al.  LETOS – a lightweight execution tool for operational semantics , 1999 .

[105]  Simone Tini,et al.  Probabilistic Congruence for Semistochastic Generative Processes , 2005, FoSSaCS.

[106]  Wan Fokkink,et al.  Ntyft/Ntyxt Rules Reduce to Ntree Rules , 1996, Inf. Comput..

[107]  J. Meseguer,et al.  Security Policies and Security Models , 1982, 1982 IEEE Symposium on Security and Privacy.

[108]  Jan A. Bergstra,et al.  Syntax and defining equations for an interrupt mechanism in process algebra , 1985 .

[109]  Kees Middelburg An alternative formulation of operational conservativity with binding terms , 2003, J. Log. Algebraic Methods Program..

[110]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[111]  D. A. Turner,et al.  Miranda: A Non-Strict Functional language with Polymorphic Types , 1985, FPCA.

[112]  Jos C. M. Baeten,et al.  Process Algebra with Timing , 2002, Monographs in Theoretical Computer Science. An EATCS Series.

[113]  Frits W. Vaandrager,et al.  On the relationship between process algebra and input/output automata , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[114]  Bernard Lang,et al.  Metal: A Formalism to Specify Formalisms , 1983, Sci. Comput. Program..

[115]  Xinxin Liu,et al.  Compositionality through an Operational Semantics of Contexts , 1990, J. Log. Comput..

[116]  Falk Bartels,et al.  GSOS for Probabilistic Transition Systems , 2002, CMCS.

[117]  Wan Fokkink,et al.  Compositionality of Hennessy-Milner logic by structural operational semantics , 2006, Theor. Comput. Sci..

[118]  Jan Friso Groote,et al.  A syntactic commutativity format for SOS , 2005, Inf. Process. Lett..

[119]  Mohammad Reza Mousavi,et al.  SOS for Higher Order Processes , 2005, CONCUR.

[120]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[121]  Karl-Heinz Buth,et al.  Using SOS Definitions in Term Rewriting Proofs , 1992, Larch.

[122]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[123]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[124]  Frits W. Vaandrager,et al.  Expressiveness results for process algebras , 1993 .

[125]  Wan Fokkink,et al.  A Conservative Look at Operational Semantics with Variable Binding , 1998, Inf. Comput..