Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure

We report on visible and infrared electroluminescence (EL) from the light-emitting device based on Er-doped TiO2/p+-Si heterostructure. Under a forward bias voltage as low as 5.5 V, the device emits ∼1540 nm infrared light and visible light peaking at 522, 553, 564, and 663 nm, respectively, which are originated from Er3+ intra-4f transitions. It is found that the existence of sufficient oxygen vacancies in TiO2 is critical for triggering the Er-related EL. Furthermore, the energy transfer from the oxygen-vacancy-related excitons in TiO2 matrix to Er3+ ions is supposed to be responsible for the above-mentioned EL.

[1]  E. Logothetis,et al.  Oscillations in the electrical resistivity of TiO2 induced by solid/gas interactions , 1979 .

[2]  A. Steckl,et al.  VISIBLE AND INFRARED RARE-EARTH-ACTIVATED ELECTROLUMINESCENCE FROM INDIUM TIN OXIDE SCHOTTKY DIODES TO GAN:ER ON SI , 1999 .

[3]  D. Mardare,et al.  Structural and electrical properties of TiO2 RF sputtered thin films , 2000 .

[4]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[5]  Maria Miritello,et al.  Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices , 2002 .

[6]  Xinwei Zhao,et al.  Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction , 2002 .

[7]  Domenico Pacifici,et al.  Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification , 2003 .

[8]  Hongxing Jiang,et al.  Electroluminescent properties of erbium-doped III-N light-emitting diodes , 2004 .

[9]  Wolfgang Skorupa,et al.  Light emission and charge trapping in Er-doped silicon dioxide films containing silicon nanocrystals , 2005 .

[10]  E. Xie,et al.  Visible and near-infrared photoluminescences of europium-doped titania film , 2006 .

[11]  Chengchun Tang,et al.  Energy Transfer Enables 1.53 μm Photoluminescence from Erbium‐Doped TiO2 Semiconductor Nanocrystals Synthesized by Ar/O2 Radio‐Frequency Thermal Plasma , 2008 .

[12]  Xueyuan Chen,et al.  Emission of 1.53 μm originating from the lattice site of Er 3+ ions incorporated in TiO 2 nanocrystals , 2008 .

[13]  L. D. Negro,et al.  Energy transfer and 1.54 μm emission in amorphous silicon nitride films , 2009 .

[14]  P. Kik,et al.  Observation of temperature-independent internal Er3+ relaxation efficiency in Si-rich SiO2 films , 2009 .

[15]  Simone Raoux,et al.  Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method , 2009 .

[16]  Xiangyang Ma,et al.  Electroluminescence from TiO2/p+-Si heterostructure , 2009 .

[17]  K. Kim,et al.  Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er–Er energy migration , 2009 .

[18]  Xiangyang Ma,et al.  Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2 , 2009 .

[19]  Rui Li,et al.  Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes , 2010 .

[20]  B. Rezek,et al.  Nanocrystalline titanium dioxide films: Influence of ambient conditions on surface- and volume-related photoluminescence , 2010 .

[21]  J. Lin,et al.  1.54 μm emitters based on erbium doped InGaN p-i-n junctions , 2010 .

[22]  O Jambois,et al.  Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. , 2010, Optics express.

[23]  F. Priolo,et al.  Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices , 2010 .