General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations

Recent advances in black hole astrophysics, particularly the first visual evidence of a supermassive black hole at the center of the galaxy M87 by the Event Horizon Telescope, and the detection of an orbiting “hot spot” nearby the event horizon of Sgr A* in the Galactic center by the Gravity Collaboration, require the development of novel numerical methods to understand the underlying plasma microphysics. Non-thermal emission related to such hot spots is conjectured to originate from plasmoids that form due to magnetic reconnection in thin current layers in the innermost accretion zone. Resistivity plays a crucial role in current sheet formation, magnetic reconnection, and plasmoid growth in black hole accretion disks and jets. We included resistivity in the three-dimensional general-relativistic magnetohydrodynamics (GRMHD) code BHAC and present the implementation of an implicit–explicit scheme to treat the stiff resistive source terms of the GRMHD equations. The algorithm is tested in combination with adaptive mesh refinement to resolve the resistive scales and a constrained transport method to keep the magnetic field solenoidal. Several novel methods for primitive-variable recovery, a key part in relativistic magnetohydrodynamics codes, are presented and compared for accuracy, robustness, and efficiency. We propose a new inversion strategy that allows for resistive-GRMHD simulations of low gas-to-magnetic pressure ratio and highly magnetized regimes as applicable for black hole accretion disks, jets, and neutron-star magnetospheres. We apply the new scheme to study the effect of resistivity on accreting black holes, accounting for dissipative effects as reconnection.

[1]  S. Noble,et al.  GR-MHD Disk Winds and Jets from Black Holes and Resistive Accretion Disks , 2019, The Astrophysical Journal.

[2]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[3]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[4]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[5]  A. Mignone,et al.  A constrained transport method for the solution of the resistive relativistic MHD equations , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  A. Mignone,et al.  A Radiative Transfer Module for Relativistic Magnetohydrodynamics in the PLUTO Code , 2019, The Astrophysical Journal Supplement Series.

[7]  R. Keppens,et al.  Relativistic resistive magnetohydrodynamic reconnection and plasmoid formation in merging flux tubes , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  O. Porth,et al.  Generalized, Energy-conserving Numerical Simulations of Particles in General Relativity. II. Test Particles in Electromagnetic Fields and GRMHD , 2018, The Astrophysical Journal Supplement Series.

[9]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[10]  A. Mignone,et al.  Linear wave propagation for resistive relativistic magnetohydrodynamics , 2018, Physics of Plasmas.

[11]  C. Fendt,et al.  Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems , 2018, 1804.09652.

[12]  P. Anninos,et al.  Relativistic, Viscous, Radiation Hydrodynamic Simulations of Geometrically Thin Disks. I. Thermal and Other Instabilities , 2018, 1803.06423.

[13]  L. Rezzolla,et al.  Electromagnetic Emission from Blitzars and Its Impact on Non-repeating Fast Radio Bursts , 2018, Astrophysical Journal.

[14]  B. Ripperda,et al.  Generalized, Energy-conserving Numerical Simulations of Particles in General Relativity. I. Time-like and Null Geodesics , 2018, The Astrophysical Journal Supplement Series.

[15]  M. Shibata,et al.  Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study , 2017, The Astrophysical Journal.

[16]  D. Siegel,et al.  Recovery Schemes for Primitive Variables in General-relativistic Magnetohydrodynamics , 2017, 1712.07538.

[17]  M. Aloy,et al.  An HLLC Riemann solver for resistive relativistic magnetohydrodynamics , 2017, 1711.06691.

[18]  Rony Keppens,et al.  A Comprehensive Comparison of Relativistic Particle Integrators , 2017, 1710.09164.

[19]  I. E. Mellah,et al.  MPI-AMRVAC 2.0 for Solar and Astrophysical Applications , 2017, 1710.06140.

[20]  D. Psaltis,et al.  The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows , 2017, 1705.06293.

[21]  L. Rezzolla,et al.  Gravitational collapse to a Kerr–Newman black hole , 2017, 1703.03223.

[22]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[23]  S. Noble,et al.  rHARM: ACCRETION AND EJECTION IN RESISTIVE GR-MHD , 2016, 1610.04445.

[24]  S. Landi,et al.  Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited , 2016, 1605.06331.

[25]  D. Psaltis,et al.  PARTICLE ACCELERATION AND THE ORIGIN OF X-RAY FLARES IN GRMHD SIMULATIONS OF SGR A* , 2016, 1602.05968.

[26]  James M. Stone,et al.  AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT , 2015, 1511.00943.

[27]  H. Falcke,et al.  UvA-DARE ( Digital Academic Repository ) ALMA and VLA measurements of frequency-dependent time lags in Sagittarius A * : evidence for a relativistic outflow , 2015 .

[28]  L. Rezzolla,et al.  General-relativistic resistive-magnetohydrodynamic simulations of binary neutron stars , 2015, 1502.02021.

[29]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[30]  N. Bucciantini,et al.  Dynamo action in thick discs around Kerr black holes: high-order resistive GRMHD simulations , 2014 .

[31]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[32]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[33]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[34]  S. Komissarov,et al.  A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics , 2013, 1309.5221.

[35]  S. Doeleman,et al.  An 8 h characteristic time-scale in submillimetre light curves of Sagittarius A* , 2013, 1308.5968.

[36]  C. Palenzuela,et al.  Electromagnetic and gravitational outputs from binary-neutron-star coalescence. , 2013, Physical review letters.

[37]  C. Palenzuela,et al.  Linking electromagnetic and gravitational radiation in coalescing binary neutron stars , 2013, 1307.7372.

[38]  S. Nayakshin,et al.  A CHANDRA/HETGS CENSUS OF X-RAY VARIABILITY FROM Sgr A* DURING 2012 , 2013, 1307.5843.

[39]  Luciano Rezzolla,et al.  Implementation of a simplified approach to radiative transfer in general relativity , 2013, 1306.4953.

[40]  Y. Mizuno THE ROLE OF THE EQUATION OF STATE IN RESISTIVE RELATIVISTIC MAGNETOHYDRODYNAMICS , 2013, 1301.6052.

[41]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[42]  C. Palenzuela Modelling magnetized neutron stars using resistive magnetohydrodynamics , 2012, 1212.0130.

[43]  B. Giacomazzo,et al.  General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests , 2012, 1208.3487.

[44]  N. Bucciantini,et al.  A fully covariant mean-field dynamo closure for numerical 3+1 resistive GRMHD , 2012, 1205.2951.

[45]  Olindo Zanotti,et al.  General relativistic radiation hydrodynamics of accretion flows – II. Treating stiff source terms and exploring physical limitations , 2012, 1206.6662.

[46]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[47]  M. Takamoto,et al.  A NEW NUMERICAL SCHEME FOR RESISTIVE RELATIVISTIC MAGNETOHYDRODYNAMICS USING METHOD OF CHARACTERISTICS , 2011, 1105.5683.

[48]  L. Rezzolla,et al.  General relativistic radiation hydrodynamics of accretion flows - I. Bondi-Hoyle accretion , 2011, 1105.5615.

[49]  Michael Hesse,et al.  RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION , 2010, 1005.4485.

[50]  Michael Dumbser,et al.  Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..

[51]  Oscar Reula,et al.  Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas , 2008, 0810.1838.

[52]  A. Eckart,et al.  A 600 Minute Near-Infrared Light Curve of Sagittarius A* , 2008, 0809.2580.

[53]  Rony Keppens,et al.  A multidimensional grid-adaptive relativistic magnetofluid code , 2008, Comput. Phys. Commun..

[54]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[55]  S. Komissarov,et al.  Multi-dimensional Numerical Scheme for Resistive Relativistic MHD , 2007, 0708.0323.

[56]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[57]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[58]  W. Brandt,et al.  The flare activity of Sagittarius A : New coordinated mm to X-ray observations , 2005, astro-ph/0512440.

[59]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[60]  D. Rouan,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[61]  J. P. Goedbloed,et al.  Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation , 2003, astro-ph/0403124.

[62]  Charles F. Gammie,et al.  HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .

[63]  J. Hawley,et al.  A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.

[64]  Caltech,et al.  Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.

[65]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[66]  C. Vreugdenhil,et al.  Numerical methods for advection-diffusion problems , 1993 .

[67]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[68]  A. M. Anile Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics , 1990 .

[69]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[70]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[71]  John F. Hawley,et al.  A Numerical Study of Nonspherical Black Hole Accretion , 1984 .

[72]  V. Moncrief,et al.  Relativistic fluid disks in orbit around Kerr black holes , 1976 .

[73]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .

[74]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[75]  S. Chandrasekhar,et al.  THE STABILITY OF NON-DISSIPATIVE COUETTE FLOW IN HYDROMAGNETICS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[76]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[77]  H. Alfvén,et al.  Existence of Electromagnetic-Hydrodynamic Waves , 1942, Nature.